Skip to main content

Cramér—Rao Type Bounds for Random Set Problems

  • Chapter
Random Sets

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 97))

Abstract

Two lower bounds on the error covariance matrix are described for tracking in a dense multiple target environment. The first bound uses Bayesian theory and equivalence classes of random sets. The second bound, however, does not use random sets, but rather it is based on symmetric polynomials An interesting and previously unexplored connection between random sets and symmetric polynomials at an abstract level is suggested. Apparently, the shortest path between random sets and symmetric polynomials is through a Banach space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.E. DaumBounds on performance for multiple target trackingIEEE Transactions on Automatic Control, 35 (1990), pp. 443–446.

    Article  MATH  Google Scholar 

  2. I.R. GoodmanFuzzy sets as equivalence classes of random setsFuzzy Sets and Possibility Theory (R.R. Yager, ed.), pp. 327–343, Pergamon Press, 1982.

    Google Scholar 

  3. I.R. Goodman and H.T. NguyenUncertainty Models For Knowledge-Based SystemsNorth-Holland Publishing, 1985.

    Google Scholar 

  4. I.R. GoodmanAlgebraic and probabilistic bases for fuzzy sets and the development of fuzzy conditioningConditional Logic in Expert Systems (I.R. Goodman, M.M. Gupta, H.T. Nguyen, and G.S. Rogers, eds.), North-Holland Publishing, 1991.

    Google Scholar 

  5. K. Hestir, H.T. Nguyen, and G.S. RogersA random set formalism for evidential reasoningConditional Logic in Expert Systems (I.R. Goodman, M.M. Gupta, H.T. Nguyen, and G.S. Rogers, eds.), pp. 309–344, North-Holland Publishing, 1991.

    Google Scholar 

  6. B. KoskoFuzzy ThinkingHyperion Publishers, 1993.

    Google Scholar 

  7. G. MatheronRandom Sets and Integral GeometryJohn Wiley&Sons, 1975.

    Google Scholar 

  8. D.G. KendallFoundations of a theory of random setsStochastic Geometry (E.F. Harding and D.G. Kendall, eds.), pp. 322–376, John Wiley & Sons, 1974.

    Google Scholar 

  9. T. NorbergConvergence and existence of random set distributionsAnnals Probability, 32 (1984), pp. 331–349.

    MathSciNet  Google Scholar 

  10. H.T. NguyenOn random sets and belief functionsJournal of Mathematical Analysis and Applications, 65 (1978), pp. 531–542.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.B. WashburnReview of bounds on performance for multiple target tracking(unpublished), March 27, 1989.

    Google Scholar 

  12. F.E. DaumA system approach to multiple target trackingMultitargetMultisensor Tracking, Volume II (Y. Bar-Shalom, ed.), pp. 149–181, Artech House, 1992.

    Google Scholar 

  13. Fuzziness vs.Probability -Nth RoundSpecial Issue of IEEE Transactions on Fuzzy Systems, 2 (1994).

    Google Scholar 

  14. D.V. LindleyComments on `The efficacy of fuzzy representations of uncertainty’Special Issue of IEEE Transactions on Fuzzy Systems, 2 (1994), p. 37.

    Google Scholar 

  15. J.M. MendelFuzzy logic systems for engineering: A tutorialProceedings of the IEEE, 83 (1995), pp. 345–377.

    Article  Google Scholar 

  16. N. Wiener and A. WintnerCertain invariant characterizations of the empty setJ.T. Math, (New Series), II (1940), pp. 20–35.

    Google Scholar 

  17. V.E. BenesExact finite—dimensional filters for certain diffusions with nonlinear driftStochastics, 5 (1981), pp. 65–92.

    Article  MathSciNet  MATH  Google Scholar 

  18. V.E. BenesNew exact nonlinear filters with large Lie algebrasSystems and Control Letters, 5 (1985), pp. 217–221.

    Article  MathSciNet  MATH  Google Scholar 

  19. V.E. BenesNonlinear filtering: Problems examples applicationsAdvances in Statistical Signal Processing, Vol. 1, pp. 1–14, JAI Press, 1987.

    Google Scholar 

  20. F.E. DaumExact finite dimensional nonlinear filters IEEE Trans. Automatic Control31 (1986), pp. 616–622.

    Article  MathSciNet  MATH  Google Scholar 

  21. F.E. DaumExact nonlinear recursive filtersProceedings of the 20thConference on Information Sciences and Systems, pp. 516–519, Princeton University, March 1986.

    Google Scholar 

  22. F.E. DaumNew exact nonlinear filtersBayesian Analysis of Time Series and Dynamic Models (J.C. Spall, ed.), pp. 199–226, Marcel Dekker, New York, 1988.

    Google Scholar 

  23. F.E. DaumSolution of the Zakai equation by separation of variablesIEEE Trans. Automatic Control, 32 (1987), pp. 941–943.

    Article  MATH  Google Scholar 

  24. F.E. Daum, Newexact nonlinear filters: Theory and applicationsProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, pp. 636–649, Orlando, Florida, April 1994.

    Google Scholar 

  25. F.E. DaumBeyond Kalman filters: Practical design of nonlinear filtersProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, pp. 252–262, Orlando, Florida, April 1995.

    Google Scholar 

  26. A.H. JazwinskiStochastic ProcessesandFiltering TheoryAcademic Press, New York, 1970.

    MATH  Google Scholar 

  27. G.C. SchmidtDesigning nonlinear filters based on Daum’s TheoryAIAA Journal of Guidance, Control and Dynamics, 16 (1993), pp. 371–376.

    Article  MATH  Google Scholar 

  28. H.W. SorensonOn the development of practical nonlinear filtersInformation Science, 7 (1974), pp. 253–270.

    MathSciNet  MATH  Google Scholar 

  29. H.W. SorensonRecursive estimation for nonlinear dynamic systemsBayesian Analysis of Time Series and Dynamic Models (J.C. Spall, ed.), pp. 127–165, Marcel Dekker, New York, 1988.

    Google Scholar 

  30. L.F. Tam, W.S. Wong, and S.S.T. YauOn a necessary and sufficient condition for finite dimensionality of estimation algebrasSIAM J. Control and Optimization, 28 (1990), pp. 173–185.

    Article  MathSciNet  MATH  Google Scholar 

  31. F.E. DaumCramér—Rao bound for multiple target trackingProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Vol. 1481, pp. 582–590, 1991.

    Google Scholar 

  32. E. KamenMultiple target tracking based on symmetric measurement equationsProceedings of the American Control Conference, pp. 263–268, 1989.

    Google Scholar 

  33. R.L. Bellaire and E.W. KamenA new implementation of the SME filterProceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Vol. 2759, pp. 477–487, 1996.

    Google Scholar 

  34. S. SmaleThe topology of algorithmsJournal of Complexity, 5 (1986), pp. 149–171.

    MathSciNet  Google Scholar 

  35. A. WilesModular elliptic curves and Fermat’s last theoremAnnals of Mathematics, 141 (1995), pp. 443–551.

    Article  MathSciNet  MATH  Google Scholar 

  36. Seminar on FLTedited by V.K. Murty, CMS Conf. Proc. Vol. 17, AMS 1995.

    Google Scholar 

  37. M. KacStatistical Independence in Probability Analysis and Number TheoryMathematical Association of America, 1959.

    Google Scholar 

  38. M. KacProbability Number Theory and Statistical Physics: Selected PapersMIT Press, 1979.

    MATH  Google Scholar 

  39. R.W. BrockettDynamical systems that sort lists diagonalize matrices and solve linear programming problemsProceedings of the IEEE Conf. on Decision and Control, pp. 799–803, 1988.

    Chapter  Google Scholar 

  40. N. Karmarkar, Anew polynomial time algorithm for linear programmingCornbinatorica, 4 (1984), pp. 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  41. M.R. SchroederNumber Theory in Science and CommunicationSpringer-Verlag, 1986.

    Google Scholar 

  42. A. WeilNumber TheoryBirkhäuser, 1984.

    Google Scholar 

  43. D.P. BERTSEKASThe auction algorithm: A distributed relaxation method for the assignment problemAnnals of Operations Research, 14 (1988), pp. 105–123.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Waldschmidt, P. Moussa, J.-M. Luck, and C. Itzykson (eds.)From Number Theory to PhysicsSpringer-Verlag, 1992.

    Google Scholar 

  45. R.M. YoungExcursions in Calculus: An Interplay of the Continuous and the DiscreteMathematical Association of America, 1992.

    Google Scholar 

  46. B. Booss and D.D. BleeckerTopology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic PhysicsSpringer-Verlag, 1985.

    Google Scholar 

  47. T.M. ApostolIntroduction to Analytic Number TheorySpringer-Verlag, 1976.

    Google Scholar 

  48. I. MacdonaldSymmetric Functions and Hall Polynomials2nd Edition, Oxford Univ. Press, 1995.

    MATH  Google Scholar 

  49. G.H. Hardy and E.M. WrightAn Introduction to the Theory of Numbers5th Edition, Oxford Univ. Press, 1979.

    MATH  Google Scholar 

  50. M.R. SchroederNumber Theory in Science and CommunicationSpringer-Verlag, New York, 1990.

    Google Scholar 

  51. D. Coppersmith and S. WinogradMatrix multiplication via arithmetic progressionsProceedings of the 19th ACM Symposium on Theory of Computing, pp. 472–492, ACM 1987.

    Google Scholar 

  52. A. CayleyOn the theory of the analytical forms called treesPhilosophical Magazine, 4 (1857), pp. 172–176.

    Google Scholar 

  53. H.N.V. TemperleyGraph TheoryJohn Wiley & Sons, 1981.

    Google Scholar 

  54. Béla BollobásGraph TheorySpringer-Verlag, 1979.

    Google Scholar 

  55. Béla BollobÁsRandom GraphsAcademic Press, 1985.

    Google Scholar 

  56. V.F. KolchinRandom MappingsOptimization Software Inc., 1986.

    Google Scholar 

  57. J. STILLWELLClassical Topology and Combinatorial Group Theory2nd Edition, Springer-Verlag, 1993.

    Google Scholar 

  58. L.H. KauffmanOn KnotsPrinceton University Press, 1987.

    Google Scholar 

  59. H. WielandtFinite Permutation GroupsAcademic Press, 1964.

    MATH  Google Scholar 

  60. D. PassmanPermutation GroupsBenjamin, 1968.

    MATH  Google Scholar 

  61. O. OreTheory of GraphsAMS, 1962.

    MATH  Google Scholar 

  62. G. Polya`Kombinatorische anzahlbstimmungen für gruppen graphen and chemische verbindungenActa Math. 68 (1937), pp. 145–254.

    Article  Google Scholar 

  63. G. De B. RobinsonRepresentation Theory of the Symmetric GroupUniversity of Toronto Press, 1961.

    MATH  Google Scholar 

  64. J.D. Dixon and B. MortimerPermutation GroupsSpringer-Verlag, 1996.

    Book  MATH  Google Scholar 

  65. W. Magnus, A. Karrass, and D. SolitarCombinatorial Group TheoryDover Books Inc., 1976.

    Google Scholar 

  66. J.-P. SerreTreesSpringer-Verlag, 1980.

    Google Scholar 

  67. H. RadströmAn embedding theorem for spaces of convex setsProceedings of the AMS, pp. 165–169, 1952.

    Google Scholar 

  68. M. Puri and D. RalescuLimit theorems for random compact sets in Banach spacesMath. Proc. Cambridge Phil. Soc., 97 (1985), pp. 151–158.

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Gine, M. Hahn, and J. ZinnLimit Theorems for Random SetsProbability in Banach Space, pp. 112–135, Springer-Verlag, 1984.

    Google Scholar 

  70. K.L. Bell, Y. Steinberg, Y. Ephraim, and H.L. Van TreesExtended ZivZakai lower bound for vector parameter estimationIEEE Trans. Information Theory, 43 (1997), pp. 624–637.

    Article  MATH  Google Scholar 

  71. Relations between combinatorics and other parts of mathematicsProceedings of Symposia in Pure Mathematics, Volume XXXIV, American Math. Society, 1979.

    Google Scholar 

  72. H.W. LevinsonCayley diagramsMathematical Vistas, Annals of the NY Academy of Sciences, Volume 607, pp. 62–88, 1990.

    Article  MathSciNet  Google Scholar 

  73. I. Grossman and W. MagnusGroups and their GraphsMathematical Association of America, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daum, F.E. (1997). Cramér—Rao Type Bounds for Random Set Problems. In: Goutsias, J., Mahler, R.P.S., Nguyen, H.T. (eds) Random Sets. The IMA Volumes in Mathematics and its Applications, vol 97. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1942-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1942-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7350-9

  • Online ISBN: 978-1-4612-1942-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics