Skip to main content

On the Asymptotic Distribution of Eigenvalues in Gaps

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 95))

Abstract

Virtually all results on eigenvalue asymptotics for differential operators have their roots in Weyl’s celebrated law for the distribution of the eigenvalues

$$ 0 < E_1 < E_2 \leqslant E_3 \leqslant \ldots ,E_k \to \infty {\text{ }}as{\text{ }}k \to \infty , $$

of the Dirichlet Laplacian -△ on an open, bounded domain Ω ⊂ Rm: If N(λ) denotes the number of eigenvalues E k < λ, then

$$ N\left( \lambda \right) \sim c_d vol\left( \Omega \right)\lambda ^{m/2} ,\lambda \to \infty , $$
((1))

under mild regularity assumptions on the boundary δΩ here c m is a universal constant which depends only on the dimension m.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alama, M. Avellaneda, P.A. Deift, R. HempelOn the existence of eigenvalues of a divergence form operator A + AB in a gap of o(A).Asymptotic Analysis 8(1994), 311–344.

    MathSciNet  MATH  Google Scholar 

  2. S. Alama, P.A. Deift, R. HempelEigenvalue branches of the Schrödinger operator H — aW in a gap of o - (H).Commun. Math. Phys.121(1989), 291–321.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.Sh. BirmanDiscrete spectrum of the periodic in the gaps of a continuous one for perturbations with large coupling constant.In: Advances in Soviet Mathematics, vol. 7: Estimates and Asymptotics for Discrete Spectra. pp. 57–73. Amer. Math. Soc., Providence 1991. Journées “Equations aux Dérivées Partielles”, Groupement de Recherche CNRS, no. 1151, XIV (1994), 1–4.

    MathSciNet  Google Scholar 

  4. M.Sh. BirmanThe discrete spectrum in gaps of the perturbed periodic Schrödinger operator.I. Regular perturbations.Adv. Partial Differential Equations, Vol. 2, pp. 334–352. Akademie Verlag, Berlin 1995.

    Google Scholar 

  5. M.Sh. BirmanDiscrete spectrum of the periodic elliptic operator with a differential perturbation.Preprint 1994.

    Google Scholar 

  6. P.A. Deift, R. HempelOn the existence of eigenvalues of the Schrödinger operator H — aW in a gap of Q(H).Commun. Math. Phys. 103(1986), 461–490.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Gesztesy et al.:Trapping and Cascading of eigenvalues in the large coupling limit.Commun. Math. Phys.118(1988), 597–634.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Gesztesy, B. Simon:On a Theorem of Deift and Hempel.Commun. Math. Phys.116(1988), 503–505.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Hempel, Aleft-indefinite generalized eigenvalue problem for Schrödinger operators.Habilitation Thesis, Munich University 1987.

    MATH  Google Scholar 

  10. R. HempelOn the asymptotic distribution of eigenvalue branches of the Schrödinger operator H — aW in a spectral gap of H.J. Reine Angew. Math. 399(1989), 38–59.

    MathSciNet  MATH  Google Scholar 

  11. R. HempelEigenvalues in gaps and decoupling by Neumann boundary conditions.J. Math. Anal. Appl. 169(1992), 229–259.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. HempelEigenvalue asymptotics related to impurities in crystals.In: “Méthodes semi-classiques” (Proceedings, Colloque International, Nantes 1991). Astérisque 210(1992), 183–196.

    MathSciNet  Google Scholar 

  13. R. Hempel and I. HerbstStrong magnetic fields Dirichlet boundaries and spectral gaps. Commun. Math. Phys. 169 (1995), 237–259.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hempel and I. HerbstBands and gaps for periodic magnetic Hamiltonians.In: “Operator Theory: Advances and Applications”, Vol. 78 (Proceedings Holzhau Conference), p. 175–184, Birkhäuser, Basel 1995.

    Google Scholar 

  15. R. Hempel and J. LaitenbergerSchrödinger operators with local magnetic perturbations: existence of eigenvalues in a gap of the essential spectrum.In: “Operator Theory: Advances and Applications”, Vol. 70 (Proceedings), p. 13–18. Birkhäuser, Basel 1994.

    Google Scholar 

  16. I. Herbst and Zh. ZhaoSobolev spaces Ear-regularity,and the Feynman-Kac formula. In: Seminar on Stochastic Processes, Birkhäuser, Boston 1987.

    Google Scholar 

  17. M. KlausSome applications of the Birman—Schwinger principle.Helv. Phys. Acta 55(1982), 49–68.

    MathSciNet  Google Scholar 

  18. S.Z. LevendorskiiLower bounds for the number of eigenvalue branches for the Schrödinger operator H — aW in a gap of H: the case of indefinite W. W.Commun. P. D. E. 20(1995), 827–854.

    MathSciNet  Google Scholar 

  19. S.Z. LevendorskiiThe Floquet theory for Schrödinger operators with perturbed periodic potentials and two-term spectral asymptotics. Preprint 1995.

    Google Scholar 

  20. T. WeidlOn the discrete spectrum of partial differential and integral operators.Doctoral thesis, Kungl Tekniska Högskolan, Stockholm 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hempel, R. (1997). On the Asymptotic Distribution of Eigenvalues in Gaps. In: Rauch, J., Simon, B. (eds) Quasiclassical Methods. The IMA Volumes in Mathematics and its Applications, vol 95. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1940-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1940-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7349-3

  • Online ISBN: 978-1-4612-1940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics