Advertisement

Exact Anharmonic Quantization Condition (In One Dimension)

  • André Voros
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 95)

Abstract

An exact version of the Bohr-Sommerfeld quantization scheme is constructed for any one-dimensional homogeneous anharmonic oscillator (having the potential q 2M ). It identifies the exact spectrum as the fixed point of a nonlinear transformation acting upon level sequences within a suitable domain. This mapping itself is explicitly given as a combination of a standard Bohr-Sommerfeld quantization step with a feedback operation from the resulting spectrum. An approximate linear theory suggests, and numerical tests confirm, that our mapping is contractive up to very high (possibly all) degrees of anharmonicity. The exact spectrum is then constructively specified as the attractor of semiclassically correct level sequences. (This type of approach ought to extend to general polynomial potentials.)

Keywords

Spectral Function Zeta Function Exact Quantization Flux Operator Exact Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Voros, J. Phys.A 27(1994) 4653–4661.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Y. SibuyaGlobal Theory of a Second Order Linear Ordinary Differential Operator with a Polynomial CoefficientNorth-Holland, Amsterdam (1975).Google Scholar
  3. [3]
    B. Simon, Ann. Phys.58(1970) 76–136.CrossRefGoogle Scholar
  4. [4]
    For instance: R.B. DingleAsymptotic Expansions: Their Derivation and InterpretationAcademic Press, New York (1973).MATHGoogle Scholar
  5. [5]
    A. Voros, Ann. Inst. H. Poincaré A 39 (1983) 211–338.MathSciNetMATHGoogle Scholar
  6. [6]
    C.M. Bender, K. Olaussen and P.S. Wang, Phys. Rev.D16(1977) 1740–1748.MathSciNetGoogle Scholar
  7. [7]
    G. Parisi, in:The Riemann Problem Complete Integrability and Arithmetic Applicationseds. D. Chudnovsky and G. Chudnovsky, Lecture Notes in Mathematics 925, Springer, Berlin (1982) 178–183.Google Scholar
  8. [8]
    A. Voros, in:The Riemann Problem Complete Integrability and Arithmetic Applicationseds. D. Chudnovsky and G. Chudnovsky, Lecture Notes in Mathematics 925, Springer, Berlin (1982) 184–208 (augmented version of: Nucl. Phys.B165(1980) 209–236).Google Scholar
  9. [9]
    A. Voros, Commun. Math. Phys.110(1987) 439–465.MATHGoogle Scholar
  10. [10]
    N. Fröman and P.O. Fröman, J. Math. Phys.19(1978) 1823–1829. S. Boettcher and C.M. Bender, J. Math. Phys.31(1990) 2579–2585.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Balian and C. Bloch, Ann. Phys. (NY)85(1974) 514–545.MathSciNetMATHCrossRefGoogle Scholar
  12. [12a]
    J. EcalleLes Fonctions Résurgentes(vol. 1), Publ. Math. Univ. Paris-Sud (Orsay) 81–05 (1981), and:Cinq Applications des Fonctions Résurgentes(chap. 1), Orsay Math. preprint 84T62 (1984, unpublished).Google Scholar
  13. [12b]
    B. Candelpergher, J.-C. Nosmas and F. PhamApproche de la RésurgenceHermann, Paris (1993).Google Scholar
  14. [13a]
    J. Zinn-Justin, Nucl. Phys. B192 (1981) 125–140 and J. Math. Phys. 25 (1984) 549–555.MathSciNetGoogle Scholar
  15. [13b]
    T. Aoki, T. Kawai and Y. Takei, in:Special Functions(Proceedings, Hayashibara Forum, Okayama, 1990), eds. M. Kashiwara and T. Miwa, Springer (1991)1–29.Google Scholar
  16. [13c]
    E. Delabaere, H. Dillinger and F. Pham, Ann. Inst. Fourier 43 (1993)163–199, andExact semi-classical expansions for one-dimensional quantum oscillatorsMath. preprint (Univ. of Nice, 1996), submitted to J. Math. Phys..MathSciNetMATHCrossRefGoogle Scholar
  17. [14]
    A. Voros, in:Zeta Functions in Geometry(Proceedings, Tokyo 1990), eds. N. Kurokawa and T. Sunada, Advanced Studies in Pure Mathematics 21, Math. Soc. Japan, Kinokuniya, Tokyo (1992) 327–358.MathSciNetGoogle Scholar
  18. [15a]
    Y. Sibuya On the functional equation f(λ) + f(ωλ)f−1λ) = 1, (ω5 = 1) in: R.C.P. 25 (Proceedings, 38e Rencontre entre Physiciens Théoriciens et Mathématiciens, June 1984) vol. 34, IRMA, Strasbourg (1984) 91–103Google Scholar
  19. [15b]
    W. Messing and Y. Sibuya, Illinois J. Math. 33 (1989) 64–78.MATHGoogle Scholar
  20. [16]
    R. Balian, G. Parisi and A. Voros, Phys. Rev. Lett. 41 (1978) 1141–1144, and in:Feynman Path Integrals(Proceedings, Marseille 1978), eds. S. Albeverioet al.Lecture Notes in Physics 106, Springer, Berlin (1979) 337–360.Google Scholar
  21. [17]
    A. Erdélyi (ed.), Tables of Integral Transforms (Bateman Manuscript Project), vol. I, McGraw-Hill, New York (1954), Eq. (VI.2(12)).Google Scholar
  22. [18]
    We have benefited from accurate comparison eigenvalues up to very high anharmonicities, kindly supplied to us by Dr. V. Spirko and by Dr. M. Sieber (private communications); see also: O. Bludskÿ, V. Spirko and J. Cizek, J. Phys. Chem. 99 (1995) 15608–15610.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • André Voros
    • 1
  1. 1.CEA — Service de Physique ThéoriqueCE-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations