Advertisement

Computer Models

  • K. S. Kunzelman
  • R. P. Cochran

Abstract

Most early surgical advances were made by astute clinical researchers in the operating room or at the bedside. In this early era of surgical research, Halsted described the hospital as the “ surgeon’s laboratory.”1 Practical and ethical limitations on the use of the bedside “laboratory ” and the human as the subject of the experiment led in the early portion of the twentieth century to the use of animal models for developing surgical techniques, defining physiologic responses, and testing new interventions.

Keywords

Finite Element Model Mitral Valve Papillary Muscle Mitral Valve Repair Posterior Leaflet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacCallum WG. William Stewart Halsted, Surgeon. Baltimore: The Johns Hopkins Press, 1930Google Scholar
  2. 2.
    Renegar KB. Influenza virus infections and immunity: a review of human and animal models. Lab Anim Sci 1992;42:222–232PubMedGoogle Scholar
  3. 3.
    Report of a WHO informal consultation on animal models for evaluation of drugs and vaccines for HIV infection and AIDS. Biologicals 1990; 18: 225-233Google Scholar
  4. 4.
    Johnston C. Researchers, animal rights activists fight public relations war at Western. Can Med Assoc J 1993;148:1349–1353Google Scholar
  5. 5.
    Erickson D. Blood feud—researchers begin fighting back against animal-rights activists. Sci Am 1990;262:17–18PubMedCrossRefGoogle Scholar
  6. 6.
    Crytser T, Nandi G, Hinman-Sweeney EM, Dwivedi SN, Tobbe PA, Lyons DW. Finite element design of manipulator-coupled spacecraft for a research testbed. J Intellig Robotic Sys 1995; 13:75–91CrossRefGoogle Scholar
  7. 7.
    Ross DC, Volakis JL, Anastassiu HT. Hybrid finiteelement-modal analysis of jet engine inlet scattering. IEEE Trans Ant Prop 1995;43:277–285CrossRefGoogle Scholar
  8. 8.
    Chuban VD, Kudryashov AB. ‘Integral’ finite elements for designing the strong frames of highly maneuverable airplanes. Comput Struct 1994;53: 473–483CrossRefGoogle Scholar
  9. 9.
    Prudhomme SM, Haj-Hariri H. Investigation of supersonic underexpanded jets using adaptive unstructured finite elements. Finite Elements Anal Design 1994;17:21–40CrossRefGoogle Scholar
  10. 10.
    Hansen J. The demystification of flow and membrane: North’s computer design system. North News, Winter 1986–1987, pp. 5–8. North Sails Group, Milford, Conn., 1986Google Scholar
  11. 11.
    Mullins WM, Reynolds DT. Stress analysis of parachutes using finite elements. J Spacecraft 1971; 8:1068–1073CrossRefGoogle Scholar
  12. 12.
    Roidt RM, Kim JH. Analytical and experimental studies of a stratified flow in a pipe. In: Courtland M, Delhaye JM, eds. Sixth International Topical Meeting on Nuclear Reactor Thermal Hydraulics, vol. 1. Grenoble, France: Commissariat a l’Energie Atomique, 1993, pp. 541–547Google Scholar
  13. 13.
    Frid A. Fluid vibration in piping systems: a structural mechanics approach. I. Theory. J Sound Vibration 1989;133:23–38Google Scholar
  14. 14.
    Lapin M. Boeing brings the skies inside. Test Meas World 1995;15:53–58Google Scholar
  15. 15.
    Riter R. Modeling and testing a critical faulttolerant multi-process system. Boeing Commercial Airplanes, Seattle, Wash. Digest of Papers: Twenty-Fifth International Symposium on Fault-Tolerant Computing. Los Alamitos, Calif: IEEE Computing Society, 1995, pp. 516–521CrossRefGoogle Scholar
  16. 16.
    Rosse C. The potential of computerized representations of anatomy in the training of health care providers. Acad Med 1995;70:499–505PubMedCrossRefGoogle Scholar
  17. 17.
    Narayan S, Sensharma D, Sontori EM, Lee AA, Sabherwal A, Toga AW. Animated visualization of a high resolution color three-dimensional digital computer model of the whole human head. Int J Biomed Comput 1993;32:7–17PubMedCrossRefGoogle Scholar
  18. 18.
    Zachman HH. Interpretation of cranial MR images using a digital atlas of the human head. In: Lemke HU, ed. Proceedings of the International Symposium on Computer Assisted Radiology. Berlin: Springer-Verlag, 1991, pp. 191–198Google Scholar
  19. 19.
    Grietz T, Bohm C, Holte S, Eriksson L. A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr 1991;15:26–38CrossRefGoogle Scholar
  20. 20.
    Lemoine D, Barillot C, Gibaud G, Posqualini E. An anatomical based 3-D registration system of multimodality and atlas data in neurosurgery. In: Colchester ACF, Hawkes DJ, eds. Proceedings of the 12th International Conference on Information Processing in Medical Imaging. Berlin: Springer-Verlag, 1991, pp. 154–164Google Scholar
  21. 21.
    Conley DM, Kastella KG, Sundsten JW, et al. Computer generated three-dimensional reconstruction of the mediastinum correlated with sectional and radiological anatomy. Clin Anat 1992;5: 185–202CrossRefGoogle Scholar
  22. 22.
    Conley D, Rosse C. Animation of thoracic viscera(Digital Anatomist Series videodisc). Seattle: University of Washington Health Sciences Center for Educational Resources, 1994Google Scholar
  23. 23.
    Meals RA, Kabo JM. Computerized anatomy instruction. Clin Plastic Sur 1986;13:379–397Google Scholar
  24. 24.
    Ratiu P, Rosse C. 3-D animation of knee anatomy (Digital Anatomist Series CD-ROM). Seattle: University of Washington Health Sciences Center for Educational Resources, 1994Google Scholar
  25. 25.
    Richter E, Kramer H, Lierse W, Maas R, Hohne KH. Visualization of neonatal anatomy and pathology with a new computerized three-dimensional model as a basis for teaching, diagnosis, and therapy. Acta Anat 1994;150:75–79PubMedCrossRefGoogle Scholar
  26. 26.
    Ackerman MF The visible human project of the National Library of Medicine. In: Degoulet P, Remme TE, Rienhoff O, eds. MEDINFOR 92: Proceedings of the Seventh World Congress on Medical Informatics. Amsterdam, The Netherlands: North Holland Elsevier Science Publications, 1992, pp 366–378Google Scholar
  27. 27.
    Rosse C. Anatomical knowledge sources for enhancing applications of the UMLS. National Library of Medicine Contract NOl-LM-4-3546, 1994Google Scholar
  28. 28.
    Satava RM. Emerging medical applications of virtual reality: a surgeon’s perspective. Artif Intell Med 1994; 6:281–288PubMedCrossRefGoogle Scholar
  29. 29.
    Merril J, Allman S, Merril G, Roy R. Virtual heart surgery: trade show and medical education. Virtual Reality World 1994;2:55–57Google Scholar
  30. 30.
    Miles BJ, Kattan MW. Computer modeling of prostrate cancer treatment: a paradigm for oncologic management? Surg Oncol Clin N Am 1995; 4:361–373PubMedGoogle Scholar
  31. 31.
    Chang RWS, Bihari DJ. Outcome prediction for the individual patient in the ICU. Unafallchirurg 1994;97:199–204Google Scholar
  32. 32.
    Weiss MH, Harrison LB, Isaacs RS. Use of decision analysis in planning a management strategy for the stage NO neck. Arch Otolaryngol Head Neck Surg 1994;120:699–702PubMedCrossRefGoogle Scholar
  33. 33.
    Albertsen PC. Computer modeling and decision making: clinical applications in bladder cancer. Sem Urol 1993;3:171–176Google Scholar
  34. 34.
    Fisher WS. Selection of patients for surgery. Neurosurg Clin N Am 1993;4:35–44PubMedGoogle Scholar
  35. 35.
    Watcha MF, Smith I. Cost-effectiveness analysis of antemetic therapy for ambulatory surgery. J Clin Anesth 1994;6:370–377PubMedCrossRefGoogle Scholar
  36. 36.
    Kang YK, Park HC, Youm Y, Lee IK, Ahn MH, Ihn JC. Three dimensional shape reconstruction and finite element analysis of femur before and after the cementless type of total hip replacement. J Biomed Eng 1993;15:497–504PubMedCrossRefGoogle Scholar
  37. 37.
    Verdonschot NJ, Huiskes R, Freeman MA. Preclinical testing of hip prosthetic designs: a comparison of finite element calculations and laboratory tests. Proc Inst Mech Eng [H] 1993;207: 149–154CrossRefGoogle Scholar
  38. 38.
    Chuong CJ, Zhong P, Preminger GM. A comparison of stone damage caused by different modes of Shockwave generation. J Urol 1992;148:200–205PubMedGoogle Scholar
  39. 39.
    Krucinski S, Vesely I, Dokainish MA, Campbell G. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J Biomech 1993;26:929–943PubMedCrossRefGoogle Scholar
  40. 40.
    Black MM, Howard IC, Huang X, Patterson EA. A three-dimensional analysis of a bioprosthetic heart valve. J Biomech 1991;24:793–801PubMedCrossRefGoogle Scholar
  41. 41.
    Huang X, Black MM, Howard IC, Patterson EA. A two-dimensional finite element analysis of a bioprosthetic heart valve. J Biomech 1990;23: 753–762PubMedCrossRefGoogle Scholar
  42. 42.
    Chandran KB, Kim SH, Han G. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech 1991;24:385–395PubMedCrossRefGoogle Scholar
  43. 43.
    Satcher RL, Bussolari SR, Gimbrone MA, Dewey CF Jr. The distribution of fluid forces on modelarterial endothelium using computational fluid dynamics. J Biomech Eng 1992;114:309–316PubMedCrossRefGoogle Scholar
  44. 44.
    Lou Z, Yang WJ. A computer simulation of the blood flow at the aortic bifurcation. Biomed Mater Eng 1991;1:173–193PubMedGoogle Scholar
  45. 45.
    Xu XY, Collins MW. A review of the numerical analysis of blood flow in arterial bifurcations. Proc Inst Mech Eng [H] 1990;204:205–216CrossRefGoogle Scholar
  46. 46.
    Dubini G, Pietrabissa R, Fumero R. Computational fluid dynamics of artificial heart valves. Int J Artif Organs 1991;14:338–342PubMedGoogle Scholar
  47. 47.
    Reif TH. A numerical analysis of the backflow between the leaflets of a St Jude Medical cardiac valve prosthesis. J Biomech 1991;24:733–741PubMedCrossRefGoogle Scholar
  48. 48.
    Peskin CS, McQueen DM. Cardiac fluid dynamics. Crit Rev Biomed Eng 1992;20:451–459PubMedGoogle Scholar
  49. 49.
    McQueen DM, Peskin CS. A three-dimensional computational method for blood flow in the heart.II. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 1989;82:289–297CrossRefGoogle Scholar
  50. 50.
    Torvi DA, Dale JD. A finite element model of skin subjected to a flash fire. J Biomech Eng 1994;116: 250–255PubMedCrossRefGoogle Scholar
  51. 51.
    Tropea BI, Lee RC. Thermal injury kinetics in electrical trauma. J Biomech Eng 1992;114:241–250PubMedCrossRefGoogle Scholar
  52. 52.
    Russo G, Kicska G, Lee RC. Effectiveness of surface cooling in reducing heat injury. 3-D finite-element model of the arm. Ann N Y Acad Sci 1994;720:79–91PubMedCrossRefGoogle Scholar
  53. 53.
    Shahidi AV, Savard P. A finite element model for radiofrequency ablation of the myocardium. IEEE Trans Biomed Eng 1994;41:963–968PubMedCrossRefGoogle Scholar
  54. 54.
    Anderson G, Ye X, Henle K, Yang Z, Li G. A numerical study of rapid heating for high temperature radio frequency hyperthermia. Int J Biomed Comput 1994;35:297–307PubMedGoogle Scholar
  55. 55.
    Moreira H, Campos M, Sawusch MR, McDonnell JM, Sand B, McDonnell PJ. Holmium laser thermokeratop lasty. Ophthalmology 1993;100:752–761PubMedGoogle Scholar
  56. 56.
    Panescu D, Webster JG, Stratbucker RA. Modeling current density distributions during transcutaneous cardiac pacing. IEEE Trans Biomed Eng 1994;41:549–555PubMedCrossRefGoogle Scholar
  57. 57.
    Jorgenson DB, Haynor DR, Bardy GH, Kim Y. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model. IEEE Trans Biomed Eng 1995;42: 172–184PubMedCrossRefGoogle Scholar
  58. 58.
    Karlon WJ, Eisenberg SR, Lehr JL. Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model. IEEE Trans Biomed Eng 1993;40:246–255PubMedCrossRefGoogle Scholar
  59. 59.
    Oleson J, Samulski T, Clegg S, Das S, Grant W. Heating rate modeling and measurements in phantom and in vivo of the human upper extremity in a defective 2450 MHz microwave oven. J Microw Power Electromagn Energy 1994;29:101–108PubMedGoogle Scholar
  60. 60.
    Martin GT, Haddad MG, Cravalho EG, Bowman HE Thermal model for the local microwave hyperthermia treatment of benign prostatic hyperplasia. IEEE Trans Biomed Eng 1992;39:836–844PubMedCrossRefGoogle Scholar
  61. 61.
    Berger RL, Davids N, Perrella M. Simulation of hemoglobin kinetics using finite element numerical methods. Methods Enzymol 1994;232:517–558PubMedCrossRefGoogle Scholar
  62. 62.
    Tischler MD, Cooper KA, Rowen M, Le Winter MM. Mitral valve replacement versus mitral valve repair. A Doppler and quantitative stress echocardiographic study. Circulation 1994;89:132–137PubMedCrossRefGoogle Scholar
  63. 63.
    Enriquez-Sarano M, Schaff HV, Orszulak TA, Tajik AJ, Bailey KR, Frye RL. Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation 1995; 91:1022–1028PubMedCrossRefGoogle Scholar
  64. 64.
    Yun KL, Miller DC. Mitral valve repair versus replacement. Cardiol Clin 1991;9:315–327PubMedGoogle Scholar
  65. 65.
    Carpentier A. Cardiac valve surgery—the “French correction.” J Thorac Cardiovasc Surg 1983;86: 323–337PubMedGoogle Scholar
  66. 66.
    Zussa C, Polesel E, Rocco F, Galloni M, Frater RW, Volfre C. Surgical technique for artificial mitral chordae implantation. J Cardiac Surg 1991; 6:432–438CrossRefGoogle Scholar
  67. 67.
    Vetter HO, Burack JH, Factor SM, Macaluso F, Frater RWM. Replacement of chordae tendineae of the mitral valve using the new expanded PTFE suture in sheep. In: Bodnar E, Yacoub M, eds. Biologic and Bioprosthetic Valves. New York: Yorke Medical Books, 1986, pp. 772–784Google Scholar
  68. 68.
    Revuelta JM, Garcia-Rinaldi R, Gaite L, Val F, Garijo F. Generation of chordae tendineae with polytetrafluoroethylene stents. J Thorac Cardiovasc Surg 1989;97:98–103PubMedGoogle Scholar
  69. 69.
    David TE, Bos J, Rakowski H. Mitral valve repair by replacement of chordae tendineae with polytetrafluoroethylene sutures. J Thorac Cardiovasc Surg 1991;101:495–501PubMedGoogle Scholar
  70. 70.
    Zussa C, Frater RWM, Polesel E, Galloni M, Valfre C. Artificial mitral valve chordae: experimental and clinical experience. Ann Thorac Surg 1990; 50:367–373PubMedCrossRefGoogle Scholar
  71. 71.
    Kunzelman KS, Cochran RP, Chuong CJ, Ring WS, Verrier ED, Eberhart RC. Finite element analysis of the mitral valve. J Heart Valve Dis 1993;2:326–340PubMedGoogle Scholar
  72. 72.
    Kunzelman KS, Cochran RP, Chuong CJ, Ring WS, Verrier ED, Eberhart RC. Finite element analysis of mitral valve pathology. J Long Term Effects Med Implants 1993;3:161–179Google Scholar
  73. 73.
    Kunzelman KS, Cochran RP. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 1992;7:71–82PubMedCrossRefGoogle Scholar
  74. 74.
    Cochran RP, Kunzelman KS. Comparison of the viscoelastic properties of suture versus porcine mitral valve chordae tendineae. J Card Surg 1991;6:508–513PubMedCrossRefGoogle Scholar
  75. 75.
    Kunzelman KS, Cochran RP, Verrier ED, Eberhart RC. An anatomic basis for mitral valve modeling. J Heart Valve Dis 1994;3:491–496PubMedGoogle Scholar
  76. 76.
    Hamid MS, Sabbah HN, Stein PD. Vibrational analysis of bioprosthetic heart valve leaflets using numerical models: effects of leaflet stiffening, calcification, and perforation. Circ Res 1987;61:687–694PubMedCrossRefGoogle Scholar
  77. 77.
    Miller GE, Marcotte H. Computer simulation of human mitral valve mechanics and motion: a tool for clarifying mitral valve prolapse. Texas J Sci 1983;35:4–36Google Scholar
  78. 78.
    Tsakiris AG, vonBernouth G, Rastelli GC, Bourgeois MJ, Titus JL, Wood EH. Size and motion of the mitral valve annulus in anesthetized intact dogs. J Appl Physiol 1971;30:611–618PubMedGoogle Scholar
  79. 79.
    Burch GE, DePasquale NP Time course of tension in papillary muscles of the heart: theoretical considerations. JAMA 1965;192:701–704PubMedCrossRefGoogle Scholar
  80. 80.
    Grimm AF, Lendrum BL, Lin H. Papillary muscle shortening in the intact dog. Circ Res 1975;36: 49–59PubMedCrossRefGoogle Scholar
  81. 81.
    Hirakawa S, Sasayama S, Tomoike H, Crozatier B, Franklin D, McKown D, Ross J Jr. In situ measurement of papillary muscle dynamics in the dog left ventricle. Am J Physiol 1977;233:H384–H391PubMedGoogle Scholar
  82. 82.
    Sargent RG. Verification and validation of simulation models. In: Celier FE, ed. Progress in Modeling and Simulation. New York: Academic Press, 1982, ch. 9.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. S. Kunzelman
  • R. P. Cochran

There are no affiliations available

Personalised recommendations