Skip to main content

Multivariate Symmetry Models

  • Chapter

Abstract

Let Γ0 be a fixed, compact subgroup of the group Γ of orthogonal transformations on R d . A random variable x, with values in R d and distribution P, is Γ 0 -symmetric if x and γx have the same distribution for all γ ∈Γ0. In terms of P, this means P(A) = P(ΓA) for all Borel sets A and all γ ∈Γ0. Let x1,…,x n be iid random variables with values in R d. The Γ0-symmetry model asserts that the x1 have an unknown common distribution that is Γ0-symmetric. The Γ 0 -location model specifies that for some unknown η∈R d, the random variables x 1-η,…, x n-η have an unknown common distribution P which is Γ0-symmetric. This paper develops some methods of inference for these multivariate symmetry models. Unlike the one dimensional case, there are a large number of “symmetry” notions in R d,d > 1; Section 2.3 provides a few simple, useful examples, which figure in subsequent development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, K. S. (1984), ‘Probability inequalities for empirical processes and a law of the iterated logarithm’, Annals of Probability 12 1041–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderssen, S. A. (1975), ‘Invariant normal models’, Annals of Statistics pp. 132–54.

    Google Scholar 

  • Beran, R. (1984), ‘Bootstrap methods in statistics’, Jahresbericht der Deutschen Mathematischer Vereinigung pp. 14–30.

    Google Scholar 

  • Beran, R. & Millar, P. (1989), ‘A stochastic minimum distance test for multivariate parametric models’, Annals of Statistics pp. 125–140.

    Google Scholar 

  • Beran, R. J. & Millar, P. W. (1985), Rates of growth for weighted empirical processes, in L. Le Cam & R. A. Olshen, eds, ‘Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Volume II’, Wadsworth, Belmont, CA, pp. 865–887.

    Google Scholar 

  • Beran, R. J. & Millar, P. W. (1986), ‘Confidence sets for a multivariate distribution’, Annals of Statistics pp. 431–443.

    Google Scholar 

  • Beran, R. J. & Millar, P. W. (1987), ‘Stochastic estimation and testing’, Annals of Statistics pp. 1131–1154.

    Google Scholar 

  • Beran, R. J. & Millar, P. W. (1992), Tests of fit for logistic models, in K. V. Mardia, ed., ‘The Art of Statistical Science’, Wiley, pp. 153–172.

    Google Scholar 

  • Bickel, P. & Freedman, D. (1981), ‘Some asymptotic theory for the bootstrap’, Annals of Statistics pp. 1196–1217.

    Google Scholar 

  • Bickel, P. J. & Millar, P. W. (1992), ‘Uniform convergence of probabilities on classes of functions’, Statistica Sinica pp. 1–15.

    Google Scholar 

  • Chow, E. D. (1991), Stochastic minimum distance tests for censored data, PhD thesis, University of California at Berkeley.

    Google Scholar 

  • Chung, K. (1968), A Course in Probability Theory,Harcourt, Brace and World, New York.

    Google Scholar 

  • Donoho, D. & Gasko, M. (1987), Multivariate generalizations of the median and trimmed mean, Technical Report 133, Statistics Department, University of California at Berkeley.

    Google Scholar 

  • Dudley, R. M. (1978), ‘Central limit theorems for empirical measures’, Annals of Probability 6 899–929.

    Google Scholar 

  • Eaton, M. (1983), Multivariate Statistics: A vector space approach, Wiley, New York.

    MATH  Google Scholar 

  • Efron, B. (1979), ‘Bootstrap methods: another look at the jackknife’, Annals of Statistics pp. 1–26.

    Google Scholar 

  • Huber, P. (1985), ‘Projection pursuit’, Annals of Statistics pp. 435–474.

    Google Scholar 

  • Le Cam, L. (1972), Limits of experiments, in L. Le Cam,J. Neyman & E. L. Scott, eds, ‘Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability’, Vol. I, University of California Press, Berkeley, pp. 245–261.

    Google Scholar 

  • Le Cam, L. (1983), A remark on empirical measures, in P. J. Bickel, K. Doksum & J. L. Hodges, eds, ‘Festschrift for Erich Lehmann’, Wadsworth, Belmont, California, pp. 305–327.

    Google Scholar 

  • Loranger, M. (1989), A stochastic test of ellipsoidal symmetry, PhD thesis, University of California at Berkeley.

    Google Scholar 

  • Millar, P. (1985), Nonparametric applications of an infinite dimensional convolution theorem’, Zeitschrift für Wahrscheinlichkeitstheorie and Verwandte Gebiete pp. 545–556.

    Google Scholar 

  • Millar, P. W. (1983), ‘The minimax principle in asymptotic statistical theory’, Springer Lecture Notes in Mathematics pp. 75–265.

    Google Scholar 

  • Millar, P. W. (1988), Stochastic test statistics, in ‘Proceedings of the 20th Symposium on the Interface: Computer Science and Statistics’, American Statistical Association, pp. 62–68.

    Google Scholar 

  • Millar, P. W. (1993), Stochastic search and the empirical process, Technical report, University of California at Berkeley.

    Google Scholar 

  • Perlman, M. D. (1988), ‘Comment: group symmetry covariance models’, Statistical Science pp. 421–425.

    Google Scholar 

  • Pollard, D. (1980), ‘The minimum distance method of testing’, Metrika pp.43–70

    Google Scholar 

  • Pollard, D. (1982), ‘A central limit theorem for empirical processes’, Journal of the Australian Mathematical Society (Series A) pp. 235–248.

    Google Scholar 

  • Singh, K. (1981), ‘On the asymptotic accuracy of Efron’s bootstrap’, Annals of Statistics pp. 1187–1195.

    Google Scholar 

  • Watson, G. S. (1983), Statistics on Spheres, John Wiley and Sons, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beran, R.J., Millar, P.W. (1997). Multivariate Symmetry Models. In: Pollard, D., Torgersen, E., Yang, G.L. (eds) Festschrift for Lucien Le Cam. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1880-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1880-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7323-3

  • Online ISBN: 978-1-4612-1880-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics