Skip to main content

Fibroblast Growth Factor Receptors

  • Chapter
Growth Factors and Wound Healing

Part of the book series: Serono Symposia USA Norwell, Massachusetts ((SERONOSYMP))

Abstract

Fibroblast growth factor (FGF) was discovered in the 1970s as an activity that stimulates the proliferation of 3T3 cells (1). Currently, FGFs comprise a family of nine structurally related proteins (FGF-1 to -9) (reviewed in 2–6). FGFs are expressed in specific spatial and temporal patterns and are involved in developmental processes, angiogenesis, wound healing, and tumorigenesis (3, 4, 7). The purification of basic FGF (FGF-2) and other related growth factors has been facilitated by the discovery that FGFs have a high affinity for heparin (2). These growth factors can be assayed on a variety of cells or embryos, in vitro, resulting in growth, survival, or differentiation (8–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gospodarowicz D, Moran JS. Mitogenic effect of fibroblast growth factor on early passage cultures of human and murine fibroblasts. J Cell Biol 1975;66:451–7.

    PubMed  CAS  Google Scholar 

  2. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res 1992;59:115–228.

    PubMed  CAS  Google Scholar 

  3. Klagsbrun M. The fibroblast growth factor family: structural and biological properties. Prog Growth Fact Res 1989;1:207–35.

    CAS  Google Scholar 

  4. Thomas KA. Fibroblast growth factors. FASEB J 1987;1:434–40.

    PubMed  CAS  Google Scholar 

  5. Tanaka A, Miyamoto K, Minamino N, et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci USA 1992;89:8928–32.

    PubMed  CAS  Google Scholar 

  6. Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 1993;13:4251–9.

    PubMed  CAS  Google Scholar 

  7. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–7.

    PubMed  CAS  Google Scholar 

  8. Slack JMW, Darlington BG, Heath JK, Godsave SF. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 1987;326:197–200.

    PubMed  CAS  Google Scholar 

  9. Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987;325:257–9.

    PubMed  CAS  Google Scholar 

  10. Valles AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 1990;87:1124–8.

    PubMed  CAS  Google Scholar 

  11. Paterno GD, Gillespie LL, Dixon MS, Slack JMW, Heath JK. Mesoderm-inducing properties of INT-2 and kFGF: two oncogene-encoded growth factors related to FGF. Development 1989;106:79–83.

    PubMed  CAS  Google Scholar 

  12. Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989;245:57–60.

    PubMed  CAS  Google Scholar 

  13. Dionne CA, Crumley G, Bellot F, et al. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J 1990;9:2685–92.

    PubMed  CAS  Google Scholar 

  14. Ruta M, Burgess W, Givol D, et al. Receptor for acidic fibroblast growth factor is related to the tyrosine kinase encoded by the fms-like gene (FLG). Proc Natl Acad Sci USA 1989;86:8722–6.

    PubMed  CAS  Google Scholar 

  15. Reid HH, Wilks AF, Bernard O. Two forms of the basic fibroblast growth factor receptor-like mRNA are expressed in the developing mouse brain. Proc Natl Acad Sci USA 1990;87:1596–600.

    CAS  Google Scholar 

  16. Hattori Y, Odagiri H, Nakatani H, et al. K-sam,an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci USA 1990;87:5983–7.

    PubMed  CAS  Google Scholar 

  17. Safran A, Avivi A, Orr-Urtereger A, et al. The murine flg gene encodes a receptor for fibroblast growth factor. Oncogene 1990;5:635–43.

    PubMed  CAS  Google Scholar 

  18. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64:841–8.

    PubMed  CAS  Google Scholar 

  19. Partanen J, Makela TP, Eerola E, et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 1991; 10:1347–54.

    PubMed  CAS  Google Scholar 

  20. Ornitz DM, Leder P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J Biol Chem 1992;267:16305–11.

    PubMed  CAS  Google Scholar 

  21. Werner S, Duan D-SR, de Vries C, Peters KG, Johnson DE, Williams LT. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 1992;12:82–8.

    PubMed  CAS  Google Scholar 

  22. Mansukhani A, Dell’Era P, Moscatelli D, Kornbluth S, Hanafusa H, Basilico C. Characterization of the murine BEK fibroblast growth factor (FGF) receptor: activation by three members of the FGF family and requirement for heparin. Proc Natl Acad Sci USA 1992;89:3305–9.

    PubMed  CAS  Google Scholar 

  23. Miki T, Bottaro DP, Fleming TP, et al. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 1992;89:246–50.

    PubMed  CAS  Google Scholar 

  24. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992;12:240–7.

    PubMed  CAS  Google Scholar 

  25. Ornitz DM, Herr AB, Nilsson M, Westman J, Svahn C-M, Waksman G. FGF binding and FGF receptor activation by synthetic heparin-derived di-and trisaccharides. Science 1995;268:432–6.

    PubMed  CAS  Google Scholar 

  26. Spivak-Kroizman T, Lemmon MA, Dikic I, et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 1994;79:1015–24.

    PubMed  CAS  Google Scholar 

  27. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993;60:1–41.

    PubMed  CAS  Google Scholar 

  28. Schlessinger J, Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron 1992;9:383–91.

    PubMed  CAS  Google Scholar 

  29. Johnson DE, Lu J, Chen H, Werner S, Williams LT. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol 1991;11:4627–34.

    PubMed  CAS  Google Scholar 

  30. Wang F, Kan M, Yan G, Xu J, McKeehan WL. Alternately spliced NH2 terminal immunoglobulin-like loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem 1995;270:10231–5.

    PubMed  CAS  Google Scholar 

  31. Yamaguchi F, Saya H, Bruner JM, Morrison RS. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 1994;91:484–8.

    PubMed  CAS  Google Scholar 

  32. Kobrin MS, Yamanaka Y, Friess H, Lopez ME, Korc M. Aberrant expression of type I fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res 1993;53:4741–4.

    PubMed  CAS  Google Scholar 

  33. Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM. Fibroblast growth factor receptor (FGFR) 3: alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 1994;269:11620–7.

    PubMed  CAS  Google Scholar 

  34. Duan D-SR, Werner S, Williams LT. A naturally occurring secreted form of fibroblast growth factor (FGF) receptor 1 binds basic FGF in preference over acidic FGF. J Biol Chem 1992;267:16076–80.

    PubMed  CAS  Google Scholar 

  35. Xu J, Nakahara N, Crabb JW, et al. Expression and immunochemical analysis of rat and human fibroblast growth factor receptor (fig) isoforms. J Biol Chem 1992;267:11792–803.

    Google Scholar 

  36. Dell K, Williams L. A novel form of fibroblast growth factor receptor 2. J Biol Chem 1992;267:21225–9.

    PubMed  CAS  Google Scholar 

  37. MacArthur CA, Lawshé A, Xu J, et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 1995;121:3603–13.

    PubMed  CAS  Google Scholar 

  38. Santos-Ocampo S, Colvin JS, Chellaiah AT, Ornitz DM. Expression and biological activity of mouse fibroblast growth factor-9 (FGF-9). J Biol Chem 1996;271:1726–31.

    PubMed  CAS  Google Scholar 

  39. Mathieu M, Chatelain E, Ornitz D, et al. Receptor binding and mitogenic properties of mouse fibroblast growth factor 3 (FGF3); modulation of response by heparin. J Biol Chem 1995;270:24197–203.

    PubMed  CAS  Google Scholar 

  40. Wang JK, Gao G, Goldfarb M. Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol 1994;14:181–8.

    PubMed  CAS  Google Scholar 

  41. Champion-Arnaud P, Ronsin C, Gilbert E, Gesnel MC, Houssaint E, Breathnach R. Multiple mRNAs code for proteins related to the BEK fibroblast growth factor receptor. Oncogene 1991;6:979–87.

    PubMed  CAS  Google Scholar 

  42. Johnson DE, Lee PL, Lu J, Williams LT. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 1990;10:4728–36.

    PubMed  CAS  Google Scholar 

  43. Avivi A, Yayon A, Gibol D. A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett 1993; 330:249–52.

    PubMed  CAS  Google Scholar 

  44. Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 1993;13:4513–22.

    PubMed  CAS  Google Scholar 

  45. Orr-Urtreger A, Bedford MT, Burakova T, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993;158:475–86.

    PubMed  CAS  Google Scholar 

  46. Alarid ET, Rubin JS, Young P, et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc Natl Acad Sci USA 1994;91:1074–8.

    PubMed  CAS  Google Scholar 

  47. Gilbert E, Del Gatto F, Champion-Arnaud P, Gesnel M-C, Breathnach R. Control of BEK and K-SAM splice sites in alternative splicing of the fibroblast growth factor receptor 2 pre-mRNA. Mol Cell Biol 1993;13:5461–8.

    PubMed  CAS  Google Scholar 

  48. Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA. Expression of cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 1991;251:72–5.

    PubMed  CAS  Google Scholar 

  49. Adenane J, Gaudray P, Dionne CA, et al. BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 1991;6:659–63.

    Google Scholar 

  50. Asai T, Wanaka A, Kato H, Masana Y, Seo M, Tohyama M. Differential expression of two members of FGF receptor gene family, FGFR-1 and FGFR-2 mRNA, in the adult rat central nervous system. Brain Res Mol Brain Res 1993;17:174–8.

    PubMed  CAS  Google Scholar 

  51. Crumley G, Bellot F, Kaplow JM, Schlessinger J, Jaye M, Dionne CA. High-affinity binding and activation of a truncated FGF receptor by both aFGF and bFGF. Oncogene 1991;22 55–62.

    Google Scholar 

  52. Cheon H-G, LaRochelle WJ, Bottaro DP, Burgess WH, Aaronson SA. High-affinity binding sites for related fibroblast growth factor ligands reside within different receptor immunoglobulin-like domains. Proc Natl Acad Sci USA 1994;91:989–93.

    PubMed  CAS  Google Scholar 

  53. Zimmer Y, Givol D, Yayon A. Multiple structural elements determine ligand binding of fibroblast growth factor receptors. J Biol Chem 1993;268: 7899–903.

    PubMed  CAS  Google Scholar 

  54. Bernard O, Li M, Reid HH. Expression of two different forms of fibroblast growth factor receptor 1 in different mouse tissues and cell lines. Proc Natl Acad Sci USA 1991;88:7625–9.

    PubMed  CAS  Google Scholar 

  55. Wang F, Kan M, Xu J, Yan G, McKeehan WL. Ligand-specific structural domains in the fibroblast growth factor receptor. J Biol Chem 1995; 270:10222–30.

    PubMed  CAS  Google Scholar 

  56. Mansukhani A, Moscatelli D, Talarico D, Levytska V, Basilico C. A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and Kaposi FGF. Proc Natl Acad Sci USA 1990;87:4378–82.

    PubMed  CAS  Google Scholar 

  57. Kudla AJ, John ML, Bowen-Pope DF, Rainish B, Olwin BB. A requirement for fibroblast growth factor in regulation of skeletal muscle growth and differentiation cannot be replaced by activation of platelet-derived growth factor signaling pathways. Mol Cell Biol 1995;15:3238–46.

    PubMed  CAS  Google Scholar 

  58. Templeton TJ, Hauschka SD. FGF-mediated aspects of skeletal muscle growth and differetiation are controlled by a high affinity receptor, FGFR1. Dev Biol 1992;154:169–81.

    PubMed  CAS  Google Scholar 

  59. Li M, Bernard O. FDC-P1 myeloid cells engineered to express fibroblast growth factor receptor 1 proliferater and differentiate in the presence of fibroblast growth factor and heparin. Proc Natl Acad Sci USA 1992; 89:3315–9.

    PubMed  CAS  Google Scholar 

  60. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 1987;131:123–30.

    PubMed  CAS  Google Scholar 

  61. Gospodarowicz D, Chen J. Heparin protects acidic and basic FGF from inactivation. J Cell Physiol 1986;128:475–484.

    PubMed  CAS  Google Scholar 

  62. Volkin DB, Tsai PK, Dabora Jm, Gress JO, Burke CJ, Linhardt RJ, et al. Physical stabilization of acidic fibroblast growth factor by polyanions. Arch Biochem Biophys 1993;300:30–41.

    PubMed  CAS  Google Scholar 

  63. Prestrelski SJ, Fox GM, Arakawa T. Binding of heparin to basic fibroblast growth factor induces a conformational change. Arch Biochem Biophys 1992;293:314–9.

    PubMed  CAS  Google Scholar 

  64. Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991;252:1705–8.

    PubMed  CAS  Google Scholar 

  65. Olwin B, Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 1992;118:631–9.

    PubMed  CAS  Google Scholar 

  66. Flaumenhaft R, Moscatelli D, Rifkin DB. Heparin and haparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 1990;111:1651–9.

    PubMed  CAS  Google Scholar 

  67. Roghani M, Mansukhani A, Dell’Era P, et al. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem 1994;269:3976–84.

    PubMed  CAS  Google Scholar 

  68. Pantoliano MW, Horlick RA, Springer BA, et al. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 1994;33:10229–48.

    PubMed  CAS  Google Scholar 

  69. Nugent MA, Edelman ER. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry 1992;31:8876–83.

    PubMed  CAS  Google Scholar 

  70. Zhan W, Hu W, Friesel R, Maciag T. Long term growth factor exposure and differential tyrosine phosphorylation are required for DNA synthesis in BALB/c 3T3 cells. J Biol Chem 1993;268:9611–20.

    PubMed  CAS  Google Scholar 

  71. Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 1985;43:51–134.

    PubMed  CAS  Google Scholar 

  72. Ishihara M, Tyrrell D, Stauber G, Brown S, Cousens L, Stack R. Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J Biol Chem 1993;268:4675–83.

    PubMed  CAS  Google Scholar 

  73. Aviezer D, Levy E, Safran M, et al. Differential structural requirements of heparin and heparan sulfate proteoglycands that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem 1994;269:114–21.

    PubMed  CAS  Google Scholar 

  74. Vlodaysky I, Ishai-Michaeli R, Mohsen M, et al. Modulation of neovascularization and metastasis by species of heparin. In: Lane DA, et al., ed. Heparin and related polysaccharides. New York: Plenum Press, 1992:317–27.

    Google Scholar 

  75. Maccarana M, Casu B, Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 1993;268:23898–905.

    PubMed  CAS  Google Scholar 

  76. Bârzu T, Lormeau J-C, Petitou M, Michelson S, Choay J. Heparin-derived oligosaccharides: affinity for acidic fibroblast growth factor and effect on its growth-promoting activity for human endothelial cells. J Cell Physiol 1989;140:538–48.

    PubMed  Google Scholar 

  77. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990;61:203–12.

    PubMed  CAS  Google Scholar 

  78. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993;259:1918–21.

    PubMed  CAS  Google Scholar 

  79. Lemmon MA, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. TIBS 1994;19:459–63.

    PubMed  CAS  Google Scholar 

  80. Campbell JS, Wenderoth MP, Hauschka SD, Krebs EG. Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells. Proc Natl Acad Sci USA 1995;92:870–4.

    PubMed  CAS  Google Scholar 

  81. Mohammadi M, Dionne CA, Li W, et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992;358:681–4.

    PubMed  CAS  Google Scholar 

  82. Peters KG, Marie J, Wilson E, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca’ flux but not mitogenesis. Nature 1992;358:678–81.

    PubMed  CAS  Google Scholar 

  83. Sa G, Murugesan G, Jaye M, Ivashchenko Y, Fox PL. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem 1995;270:23600–6.

    Google Scholar 

  84. Tang TL, Freeman RMJ, O’Reilly AM, Neel BG, Sokol SY. The SH2containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 1995;80:473–83.

    PubMed  CAS  Google Scholar 

  85. Mohammadi M, Honneger AM, Rotin D, et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Fig) is a binding site for the SH2 domain of phospholipase C-71. Mol Cell Biol 1991;11:5068–78.

    PubMed  CAS  Google Scholar 

  86. Pawson T, Schlessinger J. SH2 and SH3 domains. Curr Biol 1993;3:434–42.

    PubMed  CAS  Google Scholar 

  87. Spivak-Kroizman T, Mohammadi M, Hu P, Jaye M, Schlessinger J, Lax I. Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. J Biol Chem 1994;269:14419–23.

    PubMed  CAS  Google Scholar 

  88. Huang J, Mohammadi M, Rodriges GA, Schlessinger J. Reduced activationof RAF-1 and MAP kinase by fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem 1995; 270:5065–72.

    PubMed  CAS  Google Scholar 

  89. Blumer KJ, Johnson GL. Diversity in function and regulation of MAP kinase pathways. TIBS 1994;19:236–40.

    PubMed  CAS  Google Scholar 

  90. Marengere LE, Songyang Z, Gish CD, et al. SH2 domain specificity and activity modified by a single residue. Nature 1994;369:502–5.

    CAS  Google Scholar 

  91. Avruch J, Zhang X-F, Kyriakis JM. Raf meets Ras: completing the framework of a single transduction pathway. TIBS 1994;19:279–83.

    PubMed  CAS  Google Scholar 

  92. Zhan X, Plourde C, Hu X, Friesel R, Maciag T. Association of fibroblast growth factor receptor-1 with c-src correlates with association between c-src and cortactin. J Biol Chem 1994;12:20221–4.

    Google Scholar 

  93. Tamm I, Kikuchi T, Zychlinsky A. Acidic and basic fibroblast growth factors are survival factors with distinctive activity in quiescent BALB/c 3T3 murine fibroblasts. Proc Natl Acad Sci USA 1991;88:3372–6.

    PubMed  CAS  Google Scholar 

  94. Jaye M, Howk R, Burgess W, et al. Human endothelial cell growth factor: cloning, nucleotide sequnce, and chromosome localization. Science 1986; 233:541–5.

    PubMed  CAS  Google Scholar 

  95. Katoh O, Hattori Y, Sato T, et al. Expression of the heparin-binding growth factor receptor genes in human megakaryocytic leukemia cells. Biochem Biophys Res Commun 1992;183:83–92.

    PubMed  CAS  Google Scholar 

  96. Wroblewski J, Edwall-Arvidsson C. Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 1995; 10:735–42.

    PubMed  CAS  Google Scholar 

  97. Iwamoto M, Shimazu A, Nakashima K, Suzuki F, Kato Y. Reduction of basic fibroblasts growth factor receptor is coupled with terminal differentiation of chondrocytes. J Biol Chem 1991;266:461–7.

    PubMed  CAS  Google Scholar 

  98. Birren S, Anderson D. A v-myc-immortalized sympathoadrenal progenitor cell line in which neuronal differentiation is initiated by FGF but not NGF. Neuron 1990;4:189–201.

    PubMed  CAS  Google Scholar 

  99. Claude P, Parada I, Gordon K, D’Amore P, Wagner J. Acidic fibroblast growth factor stimulates adrenal chromoffin cells to proliferate and to extend neurites, but is not a long-term survival factor. Neuron 1988;1:783–90.

    PubMed  CAS  Google Scholar 

  100. Murphy M, Drago J, Bartlett P. Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J Neurosci Res 1990;25:463–75.

    PubMed  CAS  Google Scholar 

  101. Pruss R, Bartlett P, Gavrilovic J, Lisak R, Rattray S. Mitogens for glial cells: a comparison of the response of cultured astrocytes, oligodendrocytes, and Schwann cells. Dev Brain Res 1982;2:19–35.

    Google Scholar 

  102. Stemple D, Mahanthappa N, Anderson D. Basic FGF induces neuronal differentiation, cell division, and NGF dependence in chromaffin cells: a sequence of events in sympathetic development. Neuron 1988;1:517–25.

    PubMed  CAS  Google Scholar 

  103. Wilson LE, Rifkin DB, Kelly F, Hannocks M-J, Gabrilove JL. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Bloo 1991;77:954–60.

    CAS  Google Scholar 

  104. Gabbianelli M, Sargiacomo M, Pelosi E, Testa U, Isacchi G, Peschle C. “Pure” human hematopoietic progenitors: premissive action of basic fibroblast growth factor. Science 1990;249:1561–4.

    PubMed  CAS  Google Scholar 

  105. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994;79:993–1003.

    PubMed  CAS  Google Scholar 

  106. Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993;75:579–587.

    PubMed  CAS  Google Scholar 

  107. Cohn MJ, Izpistia-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995;80:739–46.

    PubMed  CAS  Google Scholar 

  108. Heikinheimo M, Lawshé A, Shackleford GM, Wilson DB, MacArthur CA. FgF-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 1994;48:129–38.

    PubMed  CAS  Google Scholar 

  109. Mansour S, Goddard J, Capecchi M. Mice homozygous for a targeted disruption of the proto-oncogene int-2 developmental defects in the tail and inner ear. Development 1993;117:13–28.

    PubMed  CAS  Google Scholar 

  110. Hébert JM, Rosenquist T, Götz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 1994;78:1017–25.

    PubMed  Google Scholar 

  111. Pennycuik PR, Raphael KA. The angora locus (go) in the mouse: hair morphology, duration of growth cycle and site of action. Genet Res (Camb) 1984;44:283–91.

    CAS  Google Scholar 

  112. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science 1995;267:246–9.

    PubMed  CAS  Google Scholar 

  113. Yamaguchi TP, Harpai K, Henkemeyer M, Roussant J. FGFR-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994;8:3032–44.

    PubMed  CAS  Google Scholar 

  114. Deng C-X, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 1994;8:3045–57.

    PubMed  CAS  Google Scholar 

  115. Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 1995; 13:3296–301.

    Google Scholar 

  116. Werner S, Smola H, Liao X, et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 1994;266:819–22.

    PubMed  CAS  Google Scholar 

  117. Werner S, Weinberg W, Liao X, et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 1993; 12:2635–43.

    PubMed  CAS  Google Scholar 

  118. Bellus GA, McIntosh I, Smith EA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 1995;10:357–9.

    PubMed  CAS  Google Scholar 

  119. Rousseau F, Bonaventure J, Legeal-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994;371:252–4.

    PubMed  CAS  Google Scholar 

  120. Shiang R, Thompson LM, Zhu Y-Z, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994;78:335–42.

    PubMed  CAS  Google Scholar 

  121. Tavorimina PL, Shiang R, Thompson LM, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 1995;9:321–8.

    Google Scholar 

  122. Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet 1994;8:98–103.

    PubMed  CAS  Google Scholar 

  123. Rutland P, Pulleyn LJ, Reardon W, et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet 1995;9:173–6.

    PubMed  CAS  Google Scholar 

  124. Schell U, Hehr A, Feldman GJ, et al. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Human Mol Genet 1995; 4:323–8.

    CAS  Google Scholar 

  125. Robin NH, Feldman GJ, Mitchell HF, et al. Linkage of Pfeiffer syndrome to chromosome 8 centromere and evidence for genetic heterogeneity. Hum Mol Genet 1994;3:2153–8.

    PubMed  CAS  Google Scholar 

  126. Muenke M, Schell U, Hehr A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 1994;8:269–74.

    PubMed  CAS  Google Scholar 

  127. Lajeunie E, Ma HW, Bonaventure J, Munnich A, LeMerrer M. FGFR2 mutations in Pfeiffer syndrome. Nat Genet 1995;9:108.

    PubMed  CAS  Google Scholar 

  128. Jabs EQ, Li X, Scott AF, et al. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 1994;8:275–279.

    PubMed  CAS  Google Scholar 

  129. Wilkie AOM, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995;9:165–72.

    PubMed  CAS  Google Scholar 

  130. Rimoin DL, Hughes GN, Kaufman RL, Rosenthal RE, McAlister WH, Silberberg R. Endochondral ossification in achondroplastic dwarfism. N Engl J Med 1970;283:28–35.

    Google Scholar 

  131. Stanescu R, Stanescu V, Maroteaux P. Homozygous achondroplasia: morphologic and biochemical study of cartilage. Am J Med Genet 1990;37:412–21.

    PubMed  CAS  Google Scholar 

  132. Narcy F, Sanak M. Stop codon FGFR3 mutations in thanatophoric dwarfism type I. Nat Genet 1995;10:11–12.

    PubMed  Google Scholar 

  133. Horton WA, Hood OJ, Machado MA, Ahmed S, Griffey ES. Abnormal ossification in thanatophoric dysplasia. Bone 1988;9:53–61.

    PubMed  CAS  Google Scholar 

  134. McKusick VA. Mendelian inheritance in man: catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes, 8th ed. Baltimore: Johns Hopkins University Press, 1988.

    Google Scholar 

  135. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell 1995;80:371–8.

    PubMed  CAS  Google Scholar 

  136. Johnson RL, Riddle RD, Tabin CJ. Mechanisms of limb patterning. Curr Opin Genet Dev 1994;4:535–42.

    PubMed  CAS  Google Scholar 

  137. Niswander L, Martin GR. FGF-4 and BMP-2 have opposite effects on limb growth. Nature 1993;361:68–71.

    PubMed  CAS  Google Scholar 

  138. Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 1994; 371:609–12.

    PubMed  CAS  Google Scholar 

  139. Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature 1989;339:230–1.

    PubMed  CAS  Google Scholar 

  140. Bargmann CI, Hung M-C, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986;45:649–57.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ornitz, D.M., Waksman, G. (1997). Fibroblast Growth Factor Receptors. In: Ziegler, T.R., Pierce, G.F., Herndon, D.N. (eds) Growth Factors and Wound Healing. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1876-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1876-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7321-9

  • Online ISBN: 978-1-4612-1876-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics