Skip to main content

Modulation of IGF-I Therapy by IGFBP-3: Potential Utility in Wound Healing

  • Chapter
Growth Factors and Wound Healing

Part of the book series: Serono Symposia USA Norwell, Massachusetts ((SERONOSYMP))

  • 357 Accesses

Abstract

Insulin-like growth factor-I (IGF-I) is one of the most abundant growth factors in circulation (~200 ng/ml); however, very little of it exists in its free form. Normally, IGF-I is bound to one of its six known binding proteins designated as IGFBPs1–6 (1, 2). These IGFBPs exhibit variable tissue distributions and are believed to be involved in modulation of IGF activity (3–7). In circulation, IGF-I exists primarily as part of a ternary complex comprised of equimolar ratios of IGF-I, IGFBP-3, and a protein known as acid labile subunit (ALS) (1, 8). IGFBP-3 is by far the most abundant IGF binding protein and the only form that can bind to ALS to form the large 150-kd ternary complex. This complex found in serum greatly extends the circulating time of IGF-I and is believed to modulate the availability of free IGF-I (1, 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter RC. Insulin-like growth factor binding proteins in the human circulation: a review. Horm Res 1994;42:140–4.

    Article  PubMed  CAS  Google Scholar 

  2. Baxter RC. Circulating binding proteins for the insulin-like growth factors. Trends Endocrinol Metab 1993;4:91–6.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen P, Rosenfeld RG. Physiological and clinical relevance of the insulin-like binding proteins. Curr Opin Pediatr 1994;6:462–7.

    Article  PubMed  CAS  Google Scholar 

  4. Drop SL, Schuller AG, Lindenbergh-Kortleve DJ, Groffen C, Brinkman A, Zwarthoff EC. Structural aspects of the IGFBP family Growth Regul 1992; 2:69–79.

    PubMed  CAS  Google Scholar 

  5. Clemmons DR, Jones JI, Busby WH, Wright G. Role of insulin-like growth factor binding proteins in modifying IGF actions. Ann NY Acad Sci 1993; 692:10–21.

    Article  PubMed  CAS  Google Scholar 

  6. Clemmons DR. IGF binding proteins and their functions. Mol Reprod Dev 1993;35:368–74.

    Article  PubMed  CAS  Google Scholar 

  7. Schuller AGP, Zwarthoff EC, Drop SLS. Gene expression of the six insulin-like growth factor binding proteins in the mouse conceptus during mid-and late gestation. Endocrinology 1993;132:2544–50.

    Article  PubMed  CAS  Google Scholar 

  8. Martin JL, Baxter RC. Insulin-like growth factor binding protein-3: biochemistry and physiology. Growth Regul 1992;2:88–99.

    PubMed  CAS  Google Scholar 

  9. Lewitt MS, Saunders H, Phuyal JL, Baxter RC. Complex formation by human insulin-like growth factor-binding protein-3 and human acid-labile subunit in growth hormone-deficient rats. Endocrinology 1994;134:2402–09.

    Article  Google Scholar 

  10. Mueller RV, Spencer M, Sommer A, Maack CA, Suh D, Hunt TK. The role of IGF-I and IGFBP-3 in wound healing. In: Spencer EM, ed. Modern concepts of insulin-like growth factors. New York:Elsevier, 1991:185–92.

    Google Scholar 

  11. Karey KP, Sirbasku DA. Human platelet-derived mitogens II. Subcellular localization of insulin-like growth factor I to the alpha granules and release in response to thrombin. Blood 1989;74:1093–100.

    PubMed  CAS  Google Scholar 

  12. Cohick WS, Clemmons DR. The insulin-like growth factors. Annu Rev Physiol 1993;55:131–53.

    Article  PubMed  CAS  Google Scholar 

  13. Moller S, Jensen M, Svenson P, Skakkebaek NE. Insulin-like growth factor I (IGF-I) in burn patients. Burns 1991;17:279–81.

    Article  PubMed  CAS  Google Scholar 

  14. Abribat T, Brazeau O, Davignon I, Garrel DR. Insulin-like growth factor-I blood levels in severely burned patients: effects of time post injury, age of patient, and severity of burn. Clin Endocrinol 1993;39:583–9.

    Article  CAS  Google Scholar 

  15. Huang KF, Chung DH, Herdon DN. Insulin-like growth factor-I (IGF-I) reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg 1993;128:47–53.

    Article  PubMed  CAS  Google Scholar 

  16. Ghahary A, Fu S, Shen YJ, Shankowski HA, Tredget EE. Differential effects of thermal injury on circulating levels of insulin-like growth factor binding proteins in burn patients. Mol Cell Biochem 1994;135:171–80.

    Article  PubMed  CAS  Google Scholar 

  17. Hughs SCC, Cotterill AM, Malloy AR, et al. The induction of specific proteases for insulin-like growth factor binding proteins following major heart surgery. J endocrinol 1992;135:135–45.

    Article  Google Scholar 

  18. Tacke J, Bolder U, Löhlein D. Improved nitrogen balance after administration of recombinant growth hormone in patients undergoing gastrointestinal surgery. Infusionsther Transfusionsmed 1994;21:24–9.

    PubMed  CAS  Google Scholar 

  19. Gilpin DA, Barrow RE, Rutan RL, Broemeling L, Herndon DN. Recombinant human growth hormone accelerates wound healing with large cutaneous burns. Ann Surg 1994;220:19–24.

    Article  PubMed  CAS  Google Scholar 

  20. Herndon DN, Barrow RE, Kunkel KR, Broemeling L, Rutan RL. Effects of human recombinant growth hormone on donor site healing in severely burned children. Ann Surg 1990;211:424–31.

    Article  Google Scholar 

  21. Ross RJM, Freeman E, Jones J, Mathews DR, Preece MA, Buchanan C. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-1. Clin Endocrinol 1991;35:47–54.

    Article  CAS  Google Scholar 

  22. Dahn MS, Lange MP, Jacobs LA. Insulin-like growth factor I production is inhibited in human sepsis. Arch Surg 1988;123:1409–14.

    Article  PubMed  CAS  Google Scholar 

  23. Cotterill AM. The therapeutic potential of recombinant human insulin-like growth factor-I. Clin Endocrinol 1992;37:11–6.

    Article  CAS  Google Scholar 

  24. Sommer A, Maack CA, Spratt SK, et al. Molecular genetics and action of recombinant insulin-like growth factor binding protein-3. In: Spencer EM, ed. Modern concepts of insulin-like growth factors. New York: Elsevier, 1991: 715–32.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosen, D.M., Adams, S., Moore, J.A., Maack, C.A., Sommer, A. (1997). Modulation of IGF-I Therapy by IGFBP-3: Potential Utility in Wound Healing. In: Ziegler, T.R., Pierce, G.F., Herndon, D.N. (eds) Growth Factors and Wound Healing. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1876-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1876-0_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7321-9

  • Online ISBN: 978-1-4612-1876-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics