Inhibin and Activin as Paracrine Regulators of Gonadal Function: In Vitro Model Systems

  • Jennie P. Mather
  • Rong-Hao Li
  • David M. Phillips
  • Alison Moore
Part of the Serono Symposia USA book series (SERONOSYMP)

Abstract

Inhibin and activin were first described as feedback inhibitors of pituitary function. However, a range of data now supports the hypothesis that these factors play a major role in the paracrine regulation of gonadal function (1, 2). Activin seems to act as a mitogen and morphogen during development. Both inhibin and activin, and their receptors and binding proteins, are also expressed during the normal cycling of the adult ovary (3) and testis. The exact response to these hormones, however, may vary with the developmental stage of the testis or ovary and the stage of the seminiferous or follicular cycle.

Keywords

Cholesterol Estrogen Testosterone Progesterone Androgen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mather IP, Woodruff TK, Krummen LA. Paracrine regulation of reproductive function by inhibin and activin. Proc Soc Exp Biol Med 1992;201:1–15.PubMedGoogle Scholar
  2. 2.
    Mather J, Moore A, Li R-H. Activins inhibins and follistatins: further thoughts on a growing family of regulators. Proc Soc Exp Biol Med 1996; (in press).Google Scholar
  3. 3.
    Woodruff TK, Mather JP. Inhibin, activin and the female reproductive axis. Annu Rev Physiol 1995;57:219–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Roberts VJ, Barth S, El-Roeiy A, Yen SSC. Expression of inhibin/activin system messenger ribonucleic acids and proteins in ovarian follicles from women with polycystic ovarian syndrome. J Clin Endocrinol Metab 1994;79:1434–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Roberts VJ, Barth SI, Meunier H, Vale W. Hybridization histochemical and immunohistochemical localization of inhibin/activin subunits and messenger ribonucleic acids in the rat brain. J Comp Neurol 1996;364:473–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Feijen A, Goumans MJ, van den Eijnden-van Raaij AJM. Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development (Camb) 1994;120:3621–37.Google Scholar
  7. 7.
    Tuuri T, Eramaa M, Hilden K, Ritvos O. The tissue distribution of activin βA-and βB-subunit and follistatin messenger ribonucleic acids suggests multiple sites of action for the activin-follistatin system during human development. J Clin Endocrinol Metab 1994;78:1521–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaffe RB, Spencer SJ, Rabinovici J. Activins and inhibins: gonadal peptides during prenatal development and adult life. Ann NY Acad Sci 1993;687:1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson DM, Sullivan J, Watson M, Cahir N. Inhibin forms in human plasma. J Endocrinol 1995;144:261–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Good TE, Weber PS, Ireland JL, Pulaski J, Padmanabhan V, Schneyer AL, Lambert-Messerlian G, Ghosh BR, Miller WL, Groome N, Ireland JJ. Isolation of nine different biologically and immunologically active molecular variants of bovine follicular inhibin. Biol Reprod 1995;53:1478–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Robertson D, Burger HG, Sullivan J, Cahir N, Groome N, Poncelet E, Franchimont P, Woodruf FT, Mather JP. Biological and immunological characterization of inhibin forms in human plasma. J Clin Endocrinol Metab 1996;81(2):669–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Parvinen M, Wright WW, Phillips DM, Mather JP, Musto NA, Bardin CW. Rat spermatogenesis in vitro: completion of meiosis and early spermiogenesis. Endocrinology 1983;112:1150–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsueh AJW, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 1987;84:5082–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Woodruff TK, Borree J, Attie KA, Cox ET, Rice GC, Mather JP. Stage-specific binding of inhibin and activin to subpopulations of rat germ cells. Endocrinology 1992;130:871–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Mather JP, Phillips DM. Primary culture of testicular somatic cells. In: Barnes DM, Sirbasku D, Sato GH (eds) Methods in molecular and cell biology. New York: Liss 1984:29–45.Google Scholar
  16. 16.
    Mather JP, Perez-Infante V, Zhuang L-Z, Phillips DM. Culture of testicular cells in hormone-supplemented serum-free medium. Ann NY Acad Sci 1982;383:44–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Shikone T, Matzuk MM, Perlas E, Finegold MJ, Lewis KA, Vale W, Bradley A, Hsueh AJW. Characterization of gonadal sex cord-stromal tumor cell lines from inhibin-A and p53-deficient mice: the role of activin as an autocrine growth factor. Mol Endocrinol 1994;8:983–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Li R, Phillips DM, Mather JP. Activin promotes ovarian follicle development in vitro. Endocrinology 1995;136:849–56.PubMedCrossRefGoogle Scholar
  19. 19.
    de Winter JP, Vanderstichele HMJ, Timmerman MA, Blok LJ, Themmen APN, de Jong FH. Activin is produced by rat Sertoli cells in vitro and can act as an autocrine regulator of Sertoli cell function. Endocrinology 1993;132:975–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Foucalt P, Drowsdowsky MA, Carreau S. Germ cell and Sertoli cell interactions in human testis: evidence for stimulatory and inhibitory effects. Hum Reprod (Oxf) 1994;9:2062–8.Google Scholar
  21. 21.
    Pineau C, Sharpe RM, Saunders PTK, Gerard N, Jegou B. Regulation of Sertoli cell inhibin production and of inhibin a subunit mRNA levels by specific germ cell types. Mol Cell Endocrinol 1990;72:13–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP. Secretion of activin by interstitial cells in the testis. Science 1989;243:396–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen C-L, Pignataro OP, Feng Z-M. Inhibin/activin subunits and activin receptor are co-expressed in Leydig tumor cells. Mol Cell Endocrinol 1993;94:137–43.PubMedCrossRefGoogle Scholar
  24. 24.
    McFarlane JR, de Kretser DM, Risbridger GP. Stimulatory and inhibitory factors of Leydig cell steroidogenesis are secreted simultaneously by the rat seminiferous tubules and do not affect Leydig cell inhibin production in vitro. Reprod Fertil Dev 1994;6:693–8.PubMedCrossRefGoogle Scholar
  25. 25.
    de Winter JP, Vanderstichele HMJ, Verhoeven G, Timmerman MA, Wessling JG, de Jong FH. Peritubular myoid cells from immature rat testes secrete activin a and express activin receptor type II in vitro. Endocrinology 1994;135:759–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Krummen LA, Moore A, Woodruff TK, Covello R, Taylor R, Working P, Mather JP. Localization of inhibin and activin binding sites in the testis during development by in situ ligand binding. Biol Reprod 1994;50:734–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 1990;127:3206–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Mather JP, Roberts PE, Krummen LA. Follistatin modulates activin activity in a cell and tissue specific manner. Endocrinology 1993;132:2732–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Boitani C, Stefanini M, Fragale A, Morena AR. Activin stimulates Sertoli cell proliferation in a defined period of rat testis development. Endocrinology 1995;136:5438–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaipia A, Toppari J, Huhtaniemi I, Paranko J. Sex difference in the action of activin-A on cell proliferation of differentiating rat gonad. Endocrinology 1994;134:2165–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Coerver KA, Woodruff TK, Finegold MJ, Mather JP, Bradley A, Matzuk MM. Activin signalling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol Endocrinol 1996;10(5):534–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A. Functional analysis of activins during mammalian development. Nature (Lond) 1995;374:354–6.CrossRefGoogle Scholar
  33. 33.
    van Dissel-Emiliani FMF, Grootenhuis AJ, de Jong F, de Rooij DG. Inhibin reduces spermatogonial numbers in testes of adult mice and Chinese hamsters. Endocrinology 1989;125:1898–903.CrossRefGoogle Scholar
  34. 34.
    Hakovirta H, Kaipia A, Soder O, Parvinen M. Effects of activin A, inhibin A and transforming growth factor B1 on stage-specific deoxyribonucleic acid synthesis during rat seminiferous epithelial cycle. Endocrinology 1993;133:1664–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Ling T, Calkins H, Morris PL, Vale WW, Bardin CW. Regulation of Leydig cell function in primary culture by inhibin and activin. Endocrinology 1989;125:2134–40.CrossRefGoogle Scholar
  36. 36.
    Mauduit C, Chauvin MA, de Peretti E, Morera AM, Benahmed M. Effect of activin A on dehydroepiandrosterone and testosterone secretion by primary immature porcine Leydig cells. Biol Reprod 1991;45:101–109.PubMedCrossRefGoogle Scholar
  37. 37.
    Woodruff T, Mayo K. Regulation of inhibin synthesis in the rat ovary. Annu Rev Physiol 1990;52:807–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Roberts VJ, Barth S, El-Roeiy A, Yen SSC. Expression of inhib in/activin subunits and follistatin messenger ribonucleic acids and proteins in ovarian follicles and the corpus luteum during the human menstrual cycle. J Clin Endocrinol 1993;77:1402–10.CrossRefGoogle Scholar
  39. 39.
    Cameron VA, Nishimura E, Mathews LS, Lewis KA, Sawchenko PE, Vale WW. Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary and testis. Endocrinology 1994;134:799–808.PubMedCrossRefGoogle Scholar
  40. 40.
    Eramaa M, Hilden K, Tuuri T, Ritvos O. Regulation of inhibin/activin subunit messenger ribonucleic acids (mRNAs) by activin A and expression of activin receptor mRNAs in cultured human granulosa-luteal cells. Endocrinology 1995;136:4382–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Xiao S, Robertson DM, Findlay JK. Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology 1992;131(3):1009–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakamura M, Nakamura K, Igarashi S, Tano M, Miyamoto K, Ibuki Y, Minegishi T. Interaction between activin A and cAMP in the induction of FSH receptor in cultured rat granulosa cells. J Endocrinol 1995;147:103–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Rabinovici J, Goldsmith PC, Roberts V, Vaughan J, Vale W, Jaffe RB. Localization and secretion of inhibin/activin subunits in the human and subhuman primate fetal gonads. J Clin Endocrinol Metab 1991;73:1141–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Miro F, Hillier SG. Modulation of granulosa cell deoxyribonucleic acid synthesis and differentiation by activin. Endocrinology 1996;137(2):464–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Hillier SG, Yong EL, Illingworth PI, Baird DT, Schwall RH, Mason AJ. Effect of recombinant inhibin on androgen synthesis in cultured human thecal cells. Mol Cell Endocrinol 1991;75:R1–R6.PubMedCrossRefGoogle Scholar
  46. 46.
    Wrathall JHM, Knight PG. Effects of inhibin-related peptides and oestradiol on androstenedione and progesteron secretion by bovine thecal cells in vitro. J Endocrinol 1995;145:491–500.PubMedCrossRefGoogle Scholar
  47. 47.
    Armstrong DT, Dorrington JH, eds. Estrogen biosynthesis in the ovaries and testes. Regulatory mechanisms affecting gonadal hormone action. Baltimore: University Park Press, 1979.Google Scholar
  48. 48.
    Smyth CD, Gosden RG, McNeilly AS, Hillier SG. Effect of inhibin immunoneutralization on steroidogenesis in rat ovarian follicles in vitro. J Endocrinol 1994;140: 437–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Miro F, Smyth CD, Whitelaw PF, Milne M, Hillier SG. Regulation of 3B-hydroxysteroid dehydrogenase /5/4-isomerase and cholesterol side-chain cleavage cytochrome P450 by activin in rat granulosa cells. Endocrinology 1995;136:3247–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Cataldo N, Rabinovich J, Fujimoto VY, Jaffe RB. Follistatin antagonizes the effects of activin-A on steroidogenesis in human luteinizing granulosa cells. J Clin Endocrinol Metab 1994;79:272–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Woodruff TK, Lyons R, Hansen S, Rice G, Mather J. Inhibin and activin regulates rat ovarian folliculogenesis. Endocrinology 1990;127:3196–205.PubMedCrossRefGoogle Scholar
  52. 52.
    Erickson GF, Kokka S, Rivier C. Activin causes premature superovulation. Endocrinology 1995;136(11):4804–13..PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jennie P. Mather
  • Rong-Hao Li
  • David M. Phillips
  • Alison Moore

There are no affiliations available

Personalised recommendations