Activin Signal Transduction and the Role of TGF-β Superfamily in Cell Differentiation

  • Kunihiro Tsuchida
  • Wylie W. Vale
  • Noriko Suzuki
  • Emi Nishimura
  • Mito Shinohara
  • Hiroshi Kataoka
  • Satomi Nishikawa
  • Shin-Ichi Nishikawa
Part of the Serono Symposia USA book series (SERONOSYMP)


Ten years have passed since the initial characterization of activins as stimulators of follicle-stimulating hormone (FSH) production from the anterior pituitary (1, 2). Subsequent investigations have shown that the biological functions of activins are not restricted to modulation of pituitary hormone secretion; activins are also involved in regulation of steroidogenesis, differentiation of various cell types, nerve cell survival, and induction of mesoderm tissues both in mouse and inXenopus laevis (3,4). Thus, various research fields including cell biology, developmental biology, endocrinology, and neuroscience have merged to address the functions of activins. Activins belong to the transforming growth factor-β (TGF-β) superfamily of growth and differentiation factors, which also includes inhibins, bone morphogenetic proteins (BMPs), Müllerian duct-inhibiting substance, and glial-cell-derived neurotrophic factor (GDNF) (5, 6). Activin signal transduction initiates when activin binds to two classes of cell-surface receptors, called type I and type II (7–9). These receptors are recently characterized receptor serine kinases (RSKs). Two activin type II receptors (ActRII and ActRIIB) and two activin type I receptors (ActRI and ActRIB) have been characterized. Activin type II receptors bind ligands initially, then the ligand-type II complexes associate with type I receptors to trigger downstream signaling. Both loss-of-function and gain-of-function receptor mutants have been used to elucidate the signaling of activins (9–12).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature (Lond) 1986;321:776–9.CrossRefGoogle Scholar
  2. 2.
    Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, et al. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature (Lond) 1986;321:779–82.CrossRefGoogle Scholar
  3. 3.
    Vale W, Hsueh A, Rivier C, Yu J. The inhibin/activin family of hormones and growth factor. In: Sporn MA, AB Roberts (eds) Peptide growth factors and their receptors. Handbook of experimental pharmacology. Berlin: Springer-Verlag, 1990;211–48CrossRefGoogle Scholar
  4. 4.
    Vale W, Bilezikjian LM, Rivier C. Reproductive and other roles of inhibins and activins. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd ed. New York: Raven Press, 1994;1861–77.Google Scholar
  5. 5.
    Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of functions in different organisms. Genes Dev 1994;8:133–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Miyazono K, ten Dijke P, Ichijo H, Heldin C-H. Receptors for transforming growth factor-β. Adv Immunol 1994;55:181–220.PubMedCrossRefGoogle Scholar
  7. 7.
    Gaddy-Kurten D, Tsuchida K, Vale W. Activins and the receptor serine kinase superfamily. Recent Prog Horm Res 1995;50:109–29.PubMedGoogle Scholar
  8. 8.
    Massagué J, Attisano L, Wrana JL. The TGF-β family and its composite receptors. Trends Cell Biol 1994;4:172–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuchida K, Vaughan JM, Wiater E, Kurten D-G, Vale WW. Inactivation of activindependent transcription by kinase-deficient activin receptors. Endocrinology 1995;136:5493–503.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuchida K, Sawchenko PE, Nishikawa S-I, Vale WW. Molecular cloning of a novel type I receptor serine/threonine kinase for the TGFβ superfamily from rat brain. Mol Cell Neurosci 1996;7:467–78.PubMedCrossRefGoogle Scholar
  11. 11.
    de Winter JP, de Vries CJM, van Achterberg TAE, Ameerun RF, Feijen A, Sugino H, et al. Truncated activin type II receptors inhibit activin bioactivity by the formation of heteromeric complexes with activin type I receptors. Exp Cell Res 1996;224:323–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Hemmati-Brivanlou A, Melton DA. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in xenopus embryos. Nature (Lond)1992;359:609–14.CrossRefGoogle Scholar
  13. 13.
    Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 1994;265:1098–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanatsu M, Nishikawa S-I. In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation. Development (Camb) 1996;122:823–30.Google Scholar
  15. 15.
    Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 1991;65:973–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsuchida K, Mathews LS, Vale WW. Cloning and characterization of a transmem-brane serine kinase that acts as an activin type I receptor. Proc Natl Acad Sci USA 1993;90:11242–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Attisano L, Carcamo J, Ventura F, Weis FM, Massagué J, Wrana JL. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell 1993;75:671–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Mathews LS, Vale WW, Kintner CR. Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 1992;255:1702–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Attisano L, Wrana JL, Cheifetz S, Massagué J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/ threonine kinase receptors. Cell 1992;68:97–108.PubMedCrossRefGoogle Scholar
  20. 20.
    Carcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor β and activin. Mol Cell Biol 1994;14:3810–21.PubMedGoogle Scholar
  21. 21.
    Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature (Lond) 1994;370:341–7.CrossRefGoogle Scholar
  22. 22.
    Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signalling by the activin receptor complex. Mol Cell Biol 1996;16:1066–73.PubMedGoogle Scholar
  23. 23.
    Willis SA, Zimmerman CM, Li L, Mathews LS. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol 1996;10:367–79.PubMedCrossRefGoogle Scholar
  24. 24.
    Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J 1995;14:2199–208.PubMedGoogle Scholar
  25. 25.
    Wang T, Donahoe PK, Zervos AS. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 1994;265:674–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang T, Li B-Y, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 1996;86:435–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Okadome T, Oeda E, Saitoh M, Ichijo H, Moses HL, Miyazono K, et al. Characterization of the interaction of FKBP12 with the transforming growth factor-β type I receptor in vivo.J Biol Chem 1996;271:21687–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, et al. Identification of a member of the MAPKKK family as a potential mediator of TGFβ signal transduction. Science 1995;270:2008–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Massagué J. TGFβ signaling: receptors, transducers, and Mad proteins. Cell 1996;85:947–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Eppert K, Scherer SW, Ozcelic H, Pirone R, Hoodless P, Kim H, et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Feng X-H, Wu R-Y, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature (Lond) 1996;383:168–72.CrossRefGoogle Scholar
  32. 32.
    Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 1996;10:1880–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Matzuk MM, Finegold MJ, Su JGJ, Hsueh AJW, Bradley A. αInhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature (Lond) 1992;360:313–9.CrossRefGoogle Scholar
  34. 34.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-β induced trans-differen-tiation of mammary epithelial cells to mecenchymal cells. J Cell Biol 1994;127:2021–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Shah N, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGF-β superfamily members. Cell 1996;85:331–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Duprez DM, Coltey M, Amthor H, Brickell PM, Tickle C. Bone morphoge-netic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures. Dev Biol 1996;174:448–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto M, Kondo S, Sakurai T, Etoh Y, Shibai H, Muramatsu M. Activin/ EDF as an inhibitor of neural differentiation. Biochem Biophys Res Commun 1990;173:193–200.PubMedCrossRefGoogle Scholar
  38. 38.
    van den Eijnden van Raaij AJ, van Achterberg TA, van der Kruijssen CM, Piersma AH, Huylebroeck D, de Laat SW, et al. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev 1991;33:157–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Yu J, Shao LE, Lemas V, Yu AL, Vaughan J, Rivier J, et al. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature (Lond) 1987;330:765–7.CrossRefGoogle Scholar
  40. 40.
    Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, et al. Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci USA 1992;89:1553–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Asashima M, Nakano H, Shimada K, Kinoshita K, Ishii K, Shibai H, et al. Mesodermal induction in early amphibian embryos by activin A. Wilhelm Roux’s Arch Dev Biol 1990;198:330–5.CrossRefGoogle Scholar
  42. 42.
    Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990;63:495–501.PubMedCrossRefGoogle Scholar
  43. 43.
    Hogan B, Beddington R, Constantini F, Lacy E. Manipulating the mouse embryos; a laboratory manual. 1994.Google Scholar
  44. 44.
    Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature (Lond) 1995;374:356–60.CrossRefGoogle Scholar
  45. 45.
    Hogan BL, Blessing M, Winnier GE, Suzuki N, Jones CM. Growth factors in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Dev Suppl 1994;53–60.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kunihiro Tsuchida
  • Wylie W. Vale
  • Noriko Suzuki
  • Emi Nishimura
  • Mito Shinohara
  • Hiroshi Kataoka
  • Satomi Nishikawa
  • Shin-Ichi Nishikawa

There are no affiliations available

Personalised recommendations