Skip to main content

Activin Signaling Pathways and Their Role in Xenopus Mesoderm Formation

  • Chapter
Inhibin, Activin and Follistatin

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 89 Accesses

Abstract

Signals generated by members of the transforming growth factor-beta (TGF-β) superfamily mediate a diverse array of biological responses in immune function, growth control, cell differentiation, sexual reproduction, skeletal formation, and patterning the embryonic body. Yet, unlike other cytokines, little is known about the intracellular components in the TGF-β signal transduction pathway. In this chapter, we discuss the role of activin signaling pathways involved in early embryogenesis of Xenopus laevis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spemann H, Mangold H. Über Induktion von embryonalanlagen durch Implantation Artfremder Organisatoren. Roux’ Arch Entwicklungsmech 1924;100:599–638.

    Google Scholar 

  2. Nieuwkoop PD. The formation of the mesoderm in urodelan amphibians. I. Induction by the endoderm. Roux’Arch Entwicklungsmech 1969;162:341–73.

    Google Scholar 

  3. Nieuwkoop PD. The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. Adv Morphog 1973;10:1–39.

    PubMed  CAS  Google Scholar 

  4. Dale L, Slack JM. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development (Camb) 1987;100:279–95.

    CAS  Google Scholar 

  5. Ariizumi T, Sawamura K, Uchiyama H, Asashima M. Dose and time dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int J Dev Biol 1991;35:407–14.

    PubMed  CAS  Google Scholar 

  6. Geen JBA, New HV, Smith JC. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 1992;71:731–9.

    Article  Google Scholar 

  7. Gurdon JB, Harger P, Mitchell A, Lemaire P. Activin signalling and response to a morphogen gradient, Nature (Lond) 1994;371:487–92.

    Article  CAS  Google Scholar 

  8. Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 1990;63:485–93.

    Article  PubMed  CAS  Google Scholar 

  9. Hemmanti-Brivanlou A, Melton DA. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryo. Nature (Lond) 1992;359:609–14.

    Article  Google Scholar 

  10. Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A. Functional analysis of activins during mammalian development. Nature (Lond) 1995;374:354–6.

    Article  CAS  Google Scholar 

  11. Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature (Lond) 1995;374:356–60.

    Article  CAS  Google Scholar 

  12. Asashima M, Nakano H, Uchiyama H, Sugina H, Nakamura T, Eto Y, Ejima D, Nishimatsu S, Ueno N, Kinoshita K. Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc Natl Acad Sci. USA 1991;88:6511–4.

    Article  PubMed  CAS  Google Scholar 

  13. Wittbrodt J, Rosa FM. Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: the role of maternal activin. Genes Dev 1994;8:1448–62.

    Article  PubMed  CAS  Google Scholar 

  14. Tannahill D, Melton DA, Localized synthesis of the Vgl protein during early Xenopus development. Development (Camb) 1989;106:775–85.

    CAS  Google Scholar 

  15. Dale L, Matthew G, Coleman A. Secretion and mesoderm inducing activity of the TGFβ related domain ofVgl. EMBO J 1993;12:4471–80.

    PubMed  CAS  Google Scholar 

  16. Thomsen G, Melton DA. Processed Vg-1 protein is an axial mesoderm inducer in Xenopus. Cell 1993;74:433–41.

    Article  PubMed  CAS  Google Scholar 

  17. Kessler DS, Melton DA. Induction of dorsal mesoderm by soluble, mature Vgl protein. Development (Camb) 1995;121:2155–64.

    CAS  Google Scholar 

  18. Blumberg B, Wright CVE, DeRobertis EM, Cho KWY. Organizer specific homeobox genes in Xenopus laevis embryos. Science 1991;253:194–6.

    Article  PubMed  CAS  Google Scholar 

  19. Cho KWY, Blumberg B, Steinbeisser H, DeRobertis EM. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 1991;67:1111–20.

    Article  PubMed  CAS  Google Scholar 

  20. Watabe T, Kim S, Candia A, Rothbôcher U, Hashimoto C, Inoue K, Cho KWY. Molecular mechanisms of Spemann’s organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 1995;9:3038–50.

    Article  PubMed  CAS  Google Scholar 

  21. Joor J, Fasciana C, Sperksnider JE, Kuijer W, Destree OHJ, van den Eijinden-van Raaij AJM, de Laat SW, Zivkovic D, Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwntl. Mech 1996;55:3–18.

    Google Scholar 

  22. Rosa FM. Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 1989;57:965–74.

    Article  PubMed  CAS  Google Scholar 

  23. Huang HC, Murtaugh LC, Vize PD, Whitmann M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J 1995;14:5965–73.

    PubMed  CAS  Google Scholar 

  24. Christian JL, Olson DJ, Moon RT. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm. EMBO J 1992;11:33–41.

    PubMed  CAS  Google Scholar 

  25. Sokol S, Christian JL, Moon RT, Melton DA. Injected Wnt-8 RNA induces a completed body axis in Xenopus embryos. Cell 1991;67:741–52.

    Article  PubMed  CAS  Google Scholar 

  26. Smith WC, Harland RM. Injected Xwnt-8RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing factor. Cell 1991;67:829–40.

    Google Scholar 

  27. Sokol S, Melton DA. Interaction of Wnt and activin in dorsal mesoderm induction in Xenopus. Dev Biol 1992;154:348–55.

    Article  PubMed  CAS  Google Scholar 

  28. Kimelman D, Christian JL, Moon RT. Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. Development (Camb) 1992;116:1–9.

    CAS  Google Scholar 

  29. Moon RT, Christian JL. Competence modifiers synergize with growth factors during mesoderm induction and patterning in Xenopus. Cell 1992;71:709–12.

    Article  PubMed  CAS  Google Scholar 

  30. Jones CM, Lyons KM, Lapan PM, Wright CVE, Hogan BLM. DVR-4 (bone morphogenetic protein-4 as a posterior-ventralizing factor in Xenopus mesoderm induction. Development (Camb) 1992;115:639–47.

    CAS  Google Scholar 

  31. Dale L, Howes G, Price BMJ, Smith JC. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development (Camb) 1992;115:573–85.

    CAS  Google Scholar 

  32. Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 1994;79:169–79.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N. Proc Natl Acad Sci USA 1994;91:10255–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hawley SHB, Wünnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KWY. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 1995;9:2923–35.

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt JE, Suzuki A, Ueno N, Kimelman D. Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo. Dev Biol 1995;169:37–50.

    Article  PubMed  CAS  Google Scholar 

  36. Childs SR, Wrana JL, Arora K, Attisano L, O’Connor MB, Massague J. Identification of a Drosophila activin receptor. Proc Natl Acad Sci USA 1993;90:9475–9.

    Article  PubMed  CAS  Google Scholar 

  37. ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin CH. Characterization of type I receptors for transforming growth factor-beta and activin. Science 1994;264:101–4.

    Article  PubMed  Google Scholar 

  38. Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin CH, Miyazono K. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol 1995;130:217–26.

    Article  PubMed  CAS  Google Scholar 

  39. Jonees CM, Dale L, Hogan BL, Wright CV, Smith JC. Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development (Camb) 1996;122:1545–54.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watabe, T., Candia, A.F., Cho, K.WY. (1997). Activin Signaling Pathways and Their Role in Xenopus Mesoderm Formation. In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics