Skip to main content

Transgenic Approaches to Study the Functions of the Transforming Growth Factor-β Superfamily Members

  • Chapter
Inhibin, Activin and Follistatin

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

The tranforming growth factor-β (TGF-β)-related proteins belong to a large superfamily of secreted growth factors (1). New members of the family are still being discovered through homology-based techniques, and more than 25 mammalian members have been discovered (1–9). The in vivo functions of many of these new members are currently not known. Embryonic stem (ES) cell technology (10–12), a powerful genetic tool, has allowed the delineation of the essential function of some of these proteins and thus has opened up new avenues of research by uncovering unknown functions. With the increasing use of ES cell technology, many new mutant mouse strains have been generated and analyzed in which members of the TGF-β family, their receptors, or ligand-binding proteins have been rendered functionally inactive. This chapter focuses on those genes that have been recently “knocked out” (Table 22.1). As the signaling pathways for these proteins are studied in greater detail, the importance of this superfamily in reproduction, development, and oncogenesis will become increasingly clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133–46.

    Article  PubMed  CAS  Google Scholar 

  2. Zhao G-Q, Hogen BLM. Evidence that mouse Bmp8a (Op2) and Bmp8b are duplicated genes that play a role in spermatogenesis and placental development. Mech Dev 1996;57:159–68.

    Article  PubMed  CAS  Google Scholar 

  3. Inada M, Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, et al. Bone morphogenetic protein-12 and-13 inhibit terminal differentiation of myoblasts, but do not induce their differentiation into osteoblasts. Biochem Biophys Res Commun 1996;222:317–22.

    Article  PubMed  CAS  Google Scholar 

  4. Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, et al. Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 1994;269:28227–34.

    PubMed  CAS  Google Scholar 

  5. Hino J, Takao M, Takeshita N, Konno Y, Nishizawa T, Matsuo H, et al. cDNA cloning and genomic structure of human bone morphogenetic protein-3b (BMP-3b). Biochem Biophys Res Commun 1996;223:304–10.

    Article  PubMed  CAS  Google Scholar 

  6. Hötten G, Neidhardt H, Schneider C, Pohl J. Cloning of a new member of the TGF-β family: a putative new activin βC chain. Biochem Biophys Res Commun 1995;206:608–13.

    Article  Google Scholar 

  7. Lau AL, Nishimori K, Matzuk MM. Structural analysis of the mouse activin βC gene. Bicochim Biophys Acta 1996;1307:145–8.

    Article  Google Scholar 

  8. Schmitt J, Hötten G, Jenkins NA, Gilbert DJ, Copeland NG, Jens P, et al. Structure, chromosomal localization, and expression analysis of the mouse inhibin/ activinβ c (Inhbc) gene. Genomics 1996;32:358–66.

    Article  PubMed  CAS  Google Scholar 

  9. Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, et al. Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature (Lond) 1996;381:151–5.

    Article  CAS  Google Scholar 

  10. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.

    Article  PubMed  CAS  Google Scholar 

  11. Bradley A. Production and analysis of chimeric mice. In: Robinson EJ (ed) Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL, 1987:113–51.

    Google Scholar 

  12. Bradley A, Hasty P, Davis A, Ramirez SR. Modifying the mouse: design and desire. Biotechnology (NY) 1992;10:534–9.

    Article  CAS  Google Scholar 

  13. Feijen A, Goumans MJ, van den Eijnden-van Raaij AJM. Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development (Camb) 1994;120:3621–37.

    CAS  Google Scholar 

  14. Tuuri T, Eramaa M, Hilden K, Ritvos O. The tissue distribution of activin β A- and βB-subunit and follistatin messenger ribonucleic acids suggest multiple sites of action for the activin-follistatin system during human development. J Clin Endocrinol Metab 1994;78:1521–4.

    Article  PubMed  CAS  Google Scholar 

  15. Vale WW, Bilezikjian LM, Rivier C. Reproductive and other roles of inhibins and activins. In: Knobil E, Neill JD (eds)The physiology of reproduction. New York: Raven Press, 1994;1861–78.

    Google Scholar 

  16. Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, et al. Functional analysis of activins during development. Nature (Lond) 1995;374:354–6.

    Article  CAS  Google Scholar 

  17. Matzuk MM. Functional analysis of mammalian members of the transforming growth factor-β. Trends Endocrinol Metab 1995;6:6–13.

    Google Scholar 

  18. Vassalli A, Matzuk MM, Gardner HAR, Lee K-F, Jaenisch R. Activin/inhibin βB subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 1994;8:414–27.

    Article  PubMed  CAS  Google Scholar 

  19. Schrewe H, Gendron MM, Harbison ML, Gridley T. Mice homozygous for a null mutation of activin beta B are viable and fertile. Mech Dev 1994;47:43–51.

    Article  PubMed  CAS  Google Scholar 

  20. Michel U, Farnworth P, Findlay JK. Follistatins: more than follicle-stimulating hormone suppressing proteins. Mol Cell Endocrinol 1992;91:1–11.

    Article  Google Scholar 

  21. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin. Science 1990;247:836–8.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura T, Sugino K, Titani K, Sugino H. Follistatin, an activin-binding protein, associates with heparan sulfate chains of proteoglycans on follicular granulosa cells. J Biol Chem 1991;266:19432–7.

    PubMed  CAS  Google Scholar 

  23. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature (Lond) 1995;374:360–3.

    Article  CAS  Google Scholar 

  24. Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Krieg T, et al. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 1993;90:5237–41.

    Article  PubMed  CAS  Google Scholar 

  25. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, et al. The mouse short era skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 1992;71:399–410.

    Article  PubMed  CAS  Google Scholar 

  26. Mathews LS. Activin receptors and cellular signaling by the receptor serine kinase family. Endocr Rev 1994;15:310–25.

    PubMed  CAS  Google Scholar 

  27. Raftery LA, Twombly V, Wharton K, Gelbart WM. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 1995;139:241–54.

    PubMed  CAS  Google Scholar 

  28. Massagué J. TGF-β signaling: receptors, transducers, and mad proteins. Cell 1996;85:947–50.

    Article  PubMed  Google Scholar 

  29. Matzuk MM, Kumar TF, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature (Lond) 1995;374:356–60.

    Article  CAS  Google Scholar 

  30. Clarke L, Hepworth WB, Carey JC, Seegmiller RE. Chondrodystrophic mice with coincidental agnathia: evidence for the tongue obstruction hypothesis in cleft palate. Teratology 1988;38:565–70.

    Article  PubMed  CAS  Google Scholar 

  31. Caouette-Laberge L, Bayet B, Larocque Y. The Pierre Robin sequence: review of 125 cases and evoluation of treatment modalities. Plast Reconstr Surg 1994;93:934–42.

    Article  PubMed  CAS  Google Scholar 

  32. Matzuk MM, Finegold MJ, Su JJ, Hsueh AGJW, Bradley A. α-Inhibin is a tumor suppressor gene with gonadal specificity in mice. Nature (Lond) 1992;360:313–9.

    Article  CAS  Google Scholar 

  33. Matzuk MM, Kumar TR, Shou W, Coerver KA, Lau AL, Behringer RR, et al. Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Recent Prog Horm Res 1996;51:123–57.

    PubMed  CAS  Google Scholar 

  34. Coerver KA, Woodruff TK, Finegold MJ, Mather J, Bradley A, Matzuk MM. Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol Endocrinol 1996;10:534–43.

    Article  PubMed  CAS  Google Scholar 

  35. Hogen BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10:1580–94.

    Article  Google Scholar 

  36. Liu F, Ventura F, Doody J, Massague J. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 1995;15:3479–86.

    PubMed  CAS  Google Scholar 

  37. Willis SA, Zimmerman CM, Li L, Mathews LS. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol 1996;10:367–79.

    Article  PubMed  CAS  Google Scholar 

  38. Urist MR. Bone: formation by autoinduction. Science 1965;150:893–99.

    Article  PubMed  CAS  Google Scholar 

  39. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528–34.

    Article  PubMed  CAS  Google Scholar 

  40. Lyons KM, Hogen BL, Robertson EJ. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 1995;50:71–83.

    Article  PubMed  CAS  Google Scholar 

  41. Padgett RW, Wozney JM, Gelbart WM. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo.Proc Natl Acad Sci USA 1993;90:2905–9.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and development. Development (Camb) 1996;122:2977–86.

    CAS  Google Scholar 

  43. Jones CM, Lyons KM, Hogan BL. Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morhogenesis and neurogenesis in the mouse. Development (Camb) 1991;111:531–42.

    CAS  Google Scholar 

  44. Beddington RSP. Three-dimensional representation of gastrulation in the mouse. Ciba Found Symp 1992;165:55–60.

    Google Scholar 

  45. Winnier G, Blessing M, Labosky PA, Hogan BLM. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995;9:2105–16.

    Article  PubMed  CAS  Google Scholar 

  46. Gamer LW, Wright CV. Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 1993;43:71–81.

    Article  PubMed  CAS  Google Scholar 

  47. Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath JK, et al. Op-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 1990;9:2085–93.

    PubMed  CAS  Google Scholar 

  48. Dudley AT, Lyons KM, Roberson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995;9:2795–807.

    Article  PubMed  CAS  Google Scholar 

  49. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye. Genes Dev 1995;9:2802–20.

    Article  Google Scholar 

  50. Koseki C, Herzlinger D, al-Awqati Q. Apoptosis in metanephric development. J Cell Biol 1992;119:1327–33.

    Article  PubMed  CAS  Google Scholar 

  51. Hogen BL, Hirst EM, Horsburgh G, Hetherington CM. Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development (Camb) 1988;115–9.

    Google Scholar 

  52. Ozkaynak E, Schnegelsberg PN, Jin DF, Clifford GM, Warren FD, Drier EA, et al. Osteogenic protein-2. A new member of the transforming growth factor-beta su-perfamily expressed early in embryogenesis. J Biol Chem 1992;267:25220–7.

    PubMed  CAS  Google Scholar 

  53. Handel MA, Lane PW, Schroeder AC, Davisson MT. New mutation causing sterility in the mouse. Gamete Res 1988;21:409–23.

    Article  PubMed  CAS  Google Scholar 

  54. Zhae GQ, Deng K, Labosky PA, Liaw L, Hogan BL. The gene encoding bone morphogenetic protein 8B is required for the initation and maintenance of spermatogenesis in the mouse. Genes Dev 1996;10:1657–69.

    Article  Google Scholar 

  55. ten Dijke P, Ichijo H, Franzen P, Saras J, Toyoshima H, Heldin C, et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 1993;8:2879–87.

    PubMed  CAS  Google Scholar 

  56. Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakimi K, et al. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 1994;91:10255–9.

    Article  PubMed  CAS  Google Scholar 

  57. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 1994;14:5961–74.

    PubMed  CAS  Google Scholar 

  58. Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995;9:3027–37.

    Article  PubMed  CAS  Google Scholar 

  59. Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, et al. Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J Biol Chem 1995;270:22522–6.

    Article  PubMed  CAS  Google Scholar 

  60. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, et al. Cloning and characterization of a human tyep II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995;92:7632–6.

    Article  PubMed  CAS  Google Scholar 

  61. ten Dijke P, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, et al. Characterization of type I receptors for transforming growth factor-beta and activin. Science 1994;264:101–4.

    Article  PubMed  Google Scholar 

  62. Conlon FI, Barth KS, Robertson EJ. A novel retrovirally induced embryonic lethal mutation in the mouse: assessment of the developmental fate of embryonic stem cells homozygous for the 413.d proviral integration. Devlopment (Camb) 1991;111:969–81.

    CAS  Google Scholar 

  63. Collignon J, Varlet I, Robertson EJ. Relationship between aysmmetric nodal expression and the direction of embryonic turning. Nature (Lond) 1996;381.

    Google Scholar 

  64. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260:1130–2.

    Article  PubMed  CAS  Google Scholar 

  65. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994;266:1062–4.

    Article  PubMed  CAS  Google Scholar 

  66. Oppenhein RW, Houenou LJ, Johnson JE, Lin LF, Li L, Lo AC, et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature (Lond) 1995;373:344–6.

    Article  Google Scholar 

  67. Yan Q, Matheson C, Lopez OT. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature (Lond) 1995;373:341–4.

    Article  CAS  Google Scholar 

  68. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 1996;54:95–105.

    Article  PubMed  CAS  Google Scholar 

  69. Sánchez MP, Silos SI, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking. Nature (Lond) 1996;382:70–3.

    Article  Google Scholar 

  70. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature (Lond) 1996;382:76–9.

    Article  CAS  Google Scholar 

  71. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice. Nature (Lond) 1996;382:73–6.

    Article  CAS  Google Scholar 

  72. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985;42:581–8.

    Article  PubMed  CAS  Google Scholar 

  73. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993;2:851–6.

    Article  PubMed  CAS  Google Scholar 

  74. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neopla-sia type 2A. Nature (Lond) 1993;363:458–60.

    Article  CAS  Google Scholar 

  75. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature (Lond) 1994;367:375–6.

    Article  CAS  Google Scholar 

  76. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, et al. Point mutations affecting the tyrosine kinase domain of the RET. Nature (Lond) 1994;367:377–8.

    Article  CAS  Google Scholar 

  77. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature (Lond) 1994;367:378–80.

    Article  CAS  Google Scholar 

  78. Schuchardt A, D’Agati V, Larsson BL, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature (Lond) 1994;367:380–3.

    Article  CAS  Google Scholar 

  79. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development (Camb) 1993;119:1005–17.

    CAS  Google Scholar 

  80. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature (Lond) 1996;381:785–8.

    Article  CAS  Google Scholar 

  81. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature (Lond) 1996;381:789–93.

    Article  CAS  Google Scholar 

  82. Treanor JJ, Goodman L, de SF, Stone DM, Poulsen KT, Beck CD, et al. Characterization of a multicomponent receptor for GDNF. Nature (Lond) 1996;382:80–3.

    Article  CAS  Google Scholar 

  83. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 1996;85:1113–24.

    Article  PubMed  CAS  Google Scholar 

  84. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature (Lond) 1994;368:639–43.

    Article  CAS  Google Scholar 

  85. Thomas JT, Kerning L, Nandedkar M, Camargo M, Cervenka J, Luyten FP. A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nat Genet 1996;12:315–7.

    Article  PubMed  CAS  Google Scholar 

  86. McPerron AC, Lee S-J. GDF-3 and GDF-9: two new members of the transforming growth factor-β superfamily containing a novel pattern of cysteines. J Biol Chem 1993:268:3444–9.

    Google Scholar 

  87. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/ differentiation factor-9. Mol Endocrinol 1995;9:131–6.

    Article  PubMed  CAS  Google Scholar 

  88. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature (Lond)1996;383:531–5.

    Article  CAS  Google Scholar 

  89. Jost A. Recherches sur la differenciation sexuelle de l’embryon de lapin. Arch Anat Microsc Morph Exp 1947;36:271–315.

    Google Scholar 

  90. Jost A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent Prog Horm Res 1953;8:379–418.

    Google Scholar 

  91. Behringer RR, Finegold MJ, Cate RL. Müllerian-inhibiting substance function during mammalian sexual development. Cell 1994;79:415–25.

    Article  PubMed  CAS  Google Scholar 

  92. Mishina Y, Behringer RR. The in vivo function of Müllerian-inhibitin substance during mammalian sexual development. Adv Dev Biol 1996;4:1–25.

    Article  CAS  Google Scholar 

  93. Baarends WM, van Helmond MJL, Post M, van der Schoot PJCM, Hoogerbrugge JW, de Winter JP, et al. A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the mullerian duct. Development (Camb) 1994;120:189–97.

    CAS  Google Scholar 

  94. Teixeira J, He WW, Shah PC, Morikawa N, Lee MM, Catlin EA, et al. Developmental expression of a candiate mullerian inhibiting substance type II receptor. Endocrinology 1996;137:160–5.

    Article  PubMed  CAS  Google Scholar 

  95. di Clemente N, Wilson C, Faure E, Boussin L, Carmillo P, Tizard R, et al. Cloning, expression, and alternative splicing of the receptor for anti-Mullerian hormone. Mol Endocrinol 1994;8:1006–20.

    Article  PubMed  Google Scholar 

  96. Imbeaud S, Faure E, Lamarre I, Mattei MG, di Clemente N, Tizard R, et al. Insensitivity to anti-mullerian hormone due to a mutation in the human antimullerian hormone receptor. Nat Genet 1995;11:382–8.

    Article  PubMed  CAS  Google Scholar 

  97. Baarends WM, Hoogerbrugge JW, Post M, Visser JA, De Rooij DG, Parvinen M, et al. Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression during postnatal testis development and in the adult testis of the rat. Endocrinology 1995;136:5614–22.

    Article  PubMed  CAS  Google Scholar 

  98. Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP, et al. Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression in rat overies during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 1995;136:4951–62.

    Article  PubMed  CAS  Google Scholar 

  99. Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, et al. Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 1996;10:2577–87.

    Article  PubMed  CAS  Google Scholar 

  100. Matzuk MM, Finegold MJ, Mishina Y, Bradley A, Behringer RR. Synergistic effects of inhibins and mullerian-inhibiting substance on testicular tumorigenesis. Mol Endocrinol 1995;9:1337–45.

    Article  PubMed  CAS  Google Scholar 

  101. Fitzpatrick DR, Denhez F, Kondaiah P, Akhurst RJ. Differential expression of TGF-beta isoforms in murine palatogenesis. Development (Camb) 1990;109:585–95.

    CAS  Google Scholar 

  102. Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF-beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development (Camb) 1991;111:131–43.

    CAS  Google Scholar 

  103. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 1991;115:1091–105.

    Article  PubMed  CAS  Google Scholar 

  104. Schmid P, Cox D, Bilbe G, Maier R, McMaster GK. Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development (Camb) 1991;111:117–30.

    CAS  Google Scholar 

  105. Roberts AB, Sporn MB. The transforming growth factor-β’s. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. I. Berlin: Springer-Verlag, 1990:419–72.

    Chapter  Google Scholar 

  106. Shull MM, Ormsby I, Kier AB, Pawlowski S. Diebold RJ, Yin M, et al. Targeted disruption of the mouse tranforming growth factor-beta 1 gene results in multifo-cal inflammatory disease. Nature (Lond) 1992:359:693–9.

    Article  CAS  Google Scholar 

  107. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al. Tranforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993:90:770–4.

    Article  PubMed  CAS  Google Scholar 

  108. Pelton RW, Hogan BL, Miller DA, Moses HL. Differential expression of genes encoding TGFs beta 1, beta 2, and beta 3 during murine palate formation. Dev Biol 1990;141:456–60.

    Article  PubMed  CAS  Google Scholar 

  109. Runyan RB, Potts JD, Weeks DL. TGF-beta 3-mediated tissue interaction during embryonic heart development. Mol Reprod Dev 1992;32:152–9.

    Article  PubMed  CAS  Google Scholar 

  110. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development (Camb) 1991;113:867–78.

    CAS  Google Scholar 

  111. Pelton RW, Dickinson ME, Moses HL, Hogan BL. In situ hybridization analysis of TGF beta 3 RNA expression during mouse development: comparative studies with TGF beta 1 and beta 2. Development (Camb) 1990;110:609–20.

    CAS  Google Scholar 

  112. Brunet CL, Sharpe PM, Ferguson MW. Inhibition of TGF-beta 3 (but not TGF-beta 1 or TGF-beta 2) activity prevents normal mouse embryonic palate fusion. IntJ Dev Biol 1995;39:345–55.

    CAS  Google Scholar 

  113. Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howies PN, et al. Transforming growth factor-β3 is required for secondary palate fusion. Nat Genet 1995;ll;409–14.

    Article  Google Scholar 

  114. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nat Gent 1995;11:415–21.

    Article  CAS  Google Scholar 

  115. Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 1991;67:785–95.

    Article  PubMed  CAS  Google Scholar 

  116. Lopez-Casillas F, Wrana JL, Massague J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell 1993;73:1435–44.

    Article  PubMed  CAS  Google Scholar 

  117. Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-beta type III receptor. Cell 1991;67:797–805.

    Article  PubMed  CAS  Google Scholar 

  118. Attisano L, Wrana JL, Cheifetz S, Massague J. Novel activin receptors: distant genes and alternative mRNA splicing generate a repertoire of serine/theronine kinase receptors. Cell 1992;68:97–108.

    Article  PubMed  CAS  Google Scholar 

  119. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA, 1994;91:8817–21.

    Article  PubMed  CAS  Google Scholar 

  120. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature (Lond) 1993;361:543–7.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lau, A.L., Shou, W., Guo, Q., Matzuk, M.M. (1997). Transgenic Approaches to Study the Functions of the Transforming Growth Factor-β Superfamily Members. In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics