Skip to main content

Neural Induction in the Frog Xenopus laevis

  • Chapter
Book cover Inhibin, Activin and Follistatin

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 90 Accesses

Abstract

During vertebrate gastrulation, the cells of the dorsal ectoderm give rise to the central nervous system; ventral ectoderm differentiates into epidermis. In amphibians, the neuralization of the dorsal ectoderm is mediated by signals from the dorsal lip of the blastopore (Spemann’s organizer). An ectopic dorsal lip will neuralize ventral ectoderm (1). Ectodermal expiants (or “animal cap” expiants), cultured alone, will form only epidermis; recombined with a dorsal lip, these expiants form neural tissue (2). The recognition that the dorsal lip was both necessary and sufficient for neural induction implied that the organizer was the source of a soluble, neural-inducing factor that could neuralize ectoderm in a direct, noncell autonomous manner; signals from the organizer provide an instructive signal to the ectoderm to form neural tissue. Thus, for decades, the consensus view was that epidermis was the “default” state of the ectoderm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spemann H, Mangold H. Über Induktion von Embryonanlagen dürch Implantation artfremder Organisatoren. Arch Mikrosk Anat Entwicklungsmech 1924;100:599–638.

    Article  Google Scholar 

  2. Holtfreter J. Regionale Induktionen in Xenoplastisch Zusammengesetzten Explantaten. Roux’Arch Entwicklungsmech 1936;134:466–550.

    Article  Google Scholar 

  3. Grunz H, Tacke L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 1989;28:211–8.

    Article  PubMed  CAS  Google Scholar 

  4. Sato SM, Sargent TM. Development of neural inducing capacity in dissociated Xenopus embryos. Dev Biol 1989;134:263–6.

    Article  PubMed  CAS  Google Scholar 

  5. Godsave SF, Slack JMW. Clonal analysis of mesoderm induction in Xenopus laevis. Dev Biol 1989;134:486–90.

    Article  PubMed  CAS  Google Scholar 

  6. Hemmati-Brivanlou A, Melton DA. A truncated activin receptor dominantly inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature (Lond) 1992;359:609–14.

    Article  CAS  Google Scholar 

  7. Hemmati-Brivanlou A, Melton DA. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 1994;77:273–81.

    Article  PubMed  CAS  Google Scholar 

  8. Fainsod A, Steinbeisser H, DeRobertis EM. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 1994;13:5015–25.

    PubMed  CAS  Google Scholar 

  9. Hemmati-Brivanlou A, Thomsen GA. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 1995;17:78–89.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature (Lond) 1995;376:331–3.

    Article  CAS  Google Scholar 

  11. Sasai Y, Lu B, Steinbeisser H, DeRobertis EM. Regulation of neural induction by the Chd and BMP-4 antagonistic patterning signals in Xenopus. Nature (Lond) 1995;376:333–6.

    Article  CAS  Google Scholar 

  12. Hawley SHB, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KWY. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 1995;9:2923–35.

    Article  PubMed  CAS  Google Scholar 

  13. Xu RH, Kim J, Taira M, Zhan S, Sredni D, Kung HF. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem Biophys Res Commun 1995;212:212–9.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki A, Shioda N, Ueno N. Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Dev Growth Differ 1995;37:581–8.

    Article  CAS  Google Scholar 

  15. Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM. Neural induction by the secreted polypeptide noggin. Science 1993;262:713–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hemmati-Brivanlou A, Kelly OG, Melton DA. Follistain, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 1994;77:283–95.

    Article  PubMed  CAS  Google Scholar 

  17. Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992;70:829–40.

    Article  PubMed  CAS  Google Scholar 

  18. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, DeRobertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994;79:779–90.

    Article  PubMed  CAS  Google Scholar 

  19. Francois V, Bier E. Xenopus chordin and Drosophila sog genes encode homologous proteins functioning in dorsal-ventral axis formation. Cell 1995;80:19–20.

    Article  PubMed  CAS  Google Scholar 

  20. Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996;86:599–606.

    Article  PubMed  CAS  Google Scholar 

  21. Piccolo S, Sasai Y, Lu B, DeRobertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996;86:589–98.

    Article  PubMed  CAS  Google Scholar 

  22. Yamashita H, Ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin C-H, Miyazono K. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Biol Chem 1995;130:217–26.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinstein, D., Chang, C., Lagna, G., Suzuki, A., Wilson, P., Hemmati-Brivanlou, A. (1997). Neural Induction in the Frog Xenopus laevis . In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics