Skip to main content

Receptor Serine Kinases and Signaling by Activins and Inhibins

  • Chapter
Inhibin, Activin and Follistatin

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

Activins and inhibins were initially recognized for their important roles in the regulation of the anterior pituitary (reviewed in 1–6). Inhibins, which suppress the production of follicle-stimulating hormone (FSH), were isolated in 1985 by several groups (7–10). The purification of activins was first reported a year later, based on their ability to stimulate FSH secretion from the anterior pituitary (11, 12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Kretser DM, Robertson DM, Risbridger GP, Hedger MP, McLachlan RI, Burger HG, Findley JK. Prog Endocrinol 1988;13–23.

    Google Scholar 

  2. Dejong FH. Physiol Rev 1988;68:555–607.

    CAS  Google Scholar 

  3. Vale W, Rivier C, Hsueh A, Campen C, Meunier H, Bicsak T, Vaughan J, Corrigan A, Bardin W, Sawchenko P, et al. Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 1988;44:1–34.

    PubMed  CAS  Google Scholar 

  4. DePaolo LV, Bicsak TA, Erickson GF, Shimasaki S, Ling N. Follistatin and activin: a potential intrinsic regulatory system within diverse tissues. Proc Soc Exp Biol Med 1991;198:500–12.

    Google Scholar 

  5. Bilezikjian LM, Vale WW. Local extragonadal roles of activins. Trends Endocrinol Metab 1992;3:218–23.

    Article  PubMed  CAS  Google Scholar 

  6. Mather JP, Woodruff TK, Krummen LA. Paracrine regulation of reproductive function by inhibin and activin. Proc Soc Exp Biol Med 1992;201:1–15.

    PubMed  CAS  Google Scholar 

  7. Robertson DM, Foulds LM, Leversha L, Morgan FJ, Hearn MT,. Burger HG, Wettenhall RE, DeKretser DM. Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 1985;126:220–26.

    Article  PubMed  CAS  Google Scholar 

  8. Ling, N, Ying SY, Ueno N, Shimasaki S, Esch F, Denoroy L, Guillemin R. Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci USA 1985;82:7217–21.

    Article  PubMed  CAS  Google Scholar 

  9. Miyamoto K, Hasewaga Y, Fukuda M, Nomura M, Igarashi M, Kangawa K, Matsuo H. Isolation of porcine follicular fluid inhibin of 32K daltons. Biochem Biophys Res Commun 1985;129:396–403

    Article  PubMed  CAS  Google Scholar 

  10. Rivier J, Spiess J, McClintock R, Vaughan J, Vale W. Purification and partial characterization of inhibin from porcine follicular fluid. Biochem Biophys Res Commun 1985;133:120–7.

    Article  PubMed  CAS  Google Scholar 

  11. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature (Lond) 1986;321:776–9.

    Article  CAS  Google Scholar 

  12. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature (Lond) 1986;321:779–82.

    Article  CAS  Google Scholar 

  13. Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying SY, Guillemin R, Niall H, Seeburg PH. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature (Lond) 1985;318:659–63.

    Google Scholar 

  14. Hotten G, Neidhart H, Schneider C, Pohl J. Cloning of a new member of the TGF-beta family: a putative new activin beta-C chain. Biochem Biophys Res Commun 1995;206:608–13.

    Article  Google Scholar 

  15. Oda S, Nishimatsu S, Murakami K, Ueno N. Molecular cloning and functional analysis of a new activin beta subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem Biophys Res Commun 1995;210:581–8.

    Article  PubMed  CAS  Google Scholar 

  16. Massagué, J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  Google Scholar 

  17. Wozney, JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528–34.

    Article  PubMed  CAS  Google Scholar 

  18. Cate, RL, Mattaliano RJ, Hession C, Tizzard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 1986;45:685–98.

    Article  PubMed  CAS  Google Scholar 

  19. Weeks, DL, Melton PA. A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 1987;51:861–7.

    Article  PubMed  CAS  Google Scholar 

  20. Padgett, RW, St. Johnson RD, Gelbart WM. The decapentapegic gene complex of Drosophila encodes a protein homologous to the transforming growth factor-beta gene family. Nature (Lond) 1987;232:81–84.

    Article  Google Scholar 

  21. Basler, K, Edlund T, Jessell T, Yamada T. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF-beta family member. Cell 1993;73:687–702.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou X, Sasaki H, Lowe L, Hogan B, Kuehn MR. Nodal is a novel TGF-beta like gene expressed in the mouse node during gastrulation. Nature (Lond) 1993;361:543–7.

    Article  CAS  Google Scholar 

  23. Daopin S, Piez KA, Ogawa Y, Davis DR. Crystal structure of transforming growth factor-beta 2: an unusual fold for the super family. Science 1992;257:369–73.

    Article  PubMed  CAS  Google Scholar 

  24. Schlunegger MP, Grutter MG. An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth factor beta-2. Nature (Lond) 1992;358:430–4.

    Article  CAS  Google Scholar 

  25. Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale W. Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology 1991;128:1682–4.

    Article  PubMed  CAS  Google Scholar 

  26. Weiss J, Harris PE, Halvorson LM, Crowley WF, Jameson JL. Dynamic regulation of follicle-stimulating hormone-beta messenger ribonucleic acid levels by activin and gonadotropin-releasing hormone in perfused rat pituitary cells. Endocrinology 1992;131:1403–8.

    Article  PubMed  CAS  Google Scholar 

  27. Murata T, Ying SY. Transforming growth factor-beta and activin inhibit basal secretion of prolactin in a pituitary monolayer culture system. Proc Soc Exp Biol Med 1991;198:599–605.

    PubMed  CAS  Google Scholar 

  28. Kitaoka M, Kojima I, Ogata E. Activin A: a modulator of multiple types of anterior pituitary cells. Biochem Biophys Res Commun 1988;157:48–54.

    Article  PubMed  CAS  Google Scholar 

  29. Billestrup N, Gonzalez-Manchon C, Potter E, Vale W. Inhibition of somatotroph growth and GH biosynthesis by activin in vitro. Mol Endocrinol 1990;4:356–62.

    Article  PubMed  CAS  Google Scholar 

  30. Bilezikjian LM, Corrigan A, Vale W. Activin A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 1990;126:2369–76.

    Article  PubMed  CAS  Google Scholar 

  31. Bilezikjian LM, Blount AL, Campen CA, Gonzalez-Manchon C, Vale W. Activin A inhibits POMC mRNA accumulation and ACTH secretion of AtT20 cells. Mol Endocrinol 1991;5:1389–95.

    Article  PubMed  CAS  Google Scholar 

  32. Hsueh AJ, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 1987;164:5082–6.

    Article  Google Scholar 

  33. Shaha C, Morris PL, Chen CL, Vale W, Bardin CW. Immunostainable inhibin subunits are in multiple types of testicular cells. Endocrinology 1989;125:1941–50.

    Article  PubMed  CAS  Google Scholar 

  34. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 1990;127:3206–14.

    Article  PubMed  CAS  Google Scholar 

  35. Eto Y, Tsuji T, Takesawa M, Takano S, Yokogawa Y, Shibai H. Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 1987;142:1095–1103.

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Shao L, Lemas V, Yu AL, Vaughan J, Rivier J, Vale WW. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature (Lond) 1987;330:765–7.

    Article  CAS  Google Scholar 

  37. Broxmeyer HE, Lu L, Cooper S, Schwall RH, Mason AJ, Nikolics K. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci USA 1988;5:9052.

    Article  Google Scholar 

  38. Lebrun JJ, Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol 1997;17:1682–91.

    PubMed  CAS  Google Scholar 

  39. Hangoc G, Carow CE, Schwall R, Mason AJ, Broxmeyer HE. Effects in vivo of recombinant human inhibin on myelopoiesis in mice. Exp Hematol 1992;20:1243–6.

    PubMed  CAS  Google Scholar 

  40. Matzuk MM, Finegold MJ, Su JGJ, Hsueh AJW, Bradley A. Alpha-inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature (Lond) 1992;336:313–9.

    Article  Google Scholar 

  41. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA 1994;91:8817–21.

    Article  PubMed  CAS  Google Scholar 

  42. Schwall RH, Robbins K, Jardieu P, Chang L, Lai C, Terrell TG. Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 1993;18:347–56.

    PubMed  CAS  Google Scholar 

  43. Yasuda H, Mine T, Shibata H, Eto Y, Hasegawa Y, Takeuchi T, Asano S, Kojima I. Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. J Clin Invest 1993;92:1491–6.

    Article  PubMed  CAS  Google Scholar 

  44. Xu J, McKeehan K, Matsuzaki K, McKeehan WL. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 1995;270:6308–13.

    Article  PubMed  CAS  Google Scholar 

  45. Brosh N, Sternberg D, Honigwachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hacham Y, Carmi P, et al. The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 1995;270:29594–600.

    Article  PubMed  CAS  Google Scholar 

  46. Ogawa Y, Schmidt DK, Nathan RM, Amstrong RM, Miller KL, Sawamura SJ, Ziman JM, Erickson KL, Deleon ER, Rosen DM, et al. Bovine bone activin enhances bone morphogenetie protein-induced ectopic bone formation. J Biol Chem 1992;267:14233–7.

    PubMed  CAS  Google Scholar 

  47. McCarthy SA, Bicknell R. Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 1993;268:23066–71.

    PubMed  CAS  Google Scholar 

  48. Sawchenko PE, Plotsky PM, Pfeiffer W, Cunningham ET, Vaughan J, Rivier J, Vale W. Inhibin beta in central neural pathways involved in the control of oxytocin secretion. Nature (Lond) 1988;334:625–17.

    Article  Google Scholar 

  49. Gonzalez-Manchon C, Bilezikjian LM, Corrigan A, Mellon PL, Vale W. Activin-A modulates gonadotropin-releasing hormone secretion from a gonadotropin-releasing hormone-secreting neuronal cell line. Neuroendocrinology 1991;54:373–7.

    Article  PubMed  CAS  Google Scholar 

  50. Schubert D, Kimura H, Lacorbiere M, Vaughan J, Karr D, Fisher WH. Activin is a nerve cell survival molecule. Nature (Lond) 1990;344:968–79.

    Article  Google Scholar 

  51. Coulombe JN, Schwall R, Parent AS, Eckenstein FP, Nishi R. Induction of somatostatin immunoreactivity in cultured ciliary ganglion neurons by activin in choroid cell-conditioned medium. Neuron 1993;10:899–906.

    Article  PubMed  CAS  Google Scholar 

  52. Asashima MH, Nakano K, Shimada K, Kinoshita K, Ishii K, Shibai H, et al. Mesodermal induction in early amphibian embryos by activin A. Roux’s Arch Dev Biol 1990;198:330–5.

    Article  CAS  Google Scholar 

  53. Smith JC, Price BM, Nimmen KV, Huylebroeck D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature (Lond) 1990;345:729–31.

    Article  CAS  Google Scholar 

  54. Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 1990;63:485–93.

    Article  PubMed  CAS  Google Scholar 

  55. Van den Eijnden van Raaij AJ, van Achterberg TA, van der Kruuijssen CM, Piersma AH, Huylebroeck D, de Laat SW, et al. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev 1991;33:157–65.

    Article  PubMed  Google Scholar 

  56. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995;82:803–14.

    Article  PubMed  CAS  Google Scholar 

  57. Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 1991;65:973–82.

    Article  PubMed  CAS  Google Scholar 

  58. Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 1990;61:635–45.

    Article  PubMed  CAS  Google Scholar 

  59. Mathews LS, Vale WW, Kintner CR. Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 1992;255:1702–5.

    Article  PubMed  CAS  Google Scholar 

  60. Attisano, L, Wrana JL, Cheifetz S, Massagué J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 1992;68:97–108.

    Article  PubMed  CAS  Google Scholar 

  61. Lin H, Wang XF, Ng-Eaton E, Weinberg R, Lodish H. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992;68:775–85.

    Article  PubMed  CAS  Google Scholar 

  62. Liu F, Ventura F, Doody J, Massagué J. Human type II receptor for bone morphogenetic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 1995;15:3479–86.

    PubMed  CAS  Google Scholar 

  63. Ebner R, Chen RH, Shum L. Lawer S, Zioncheck TF, Lee A, Lopez AR, Derynck R. Cloning of type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 1993;260:1344–8.

    Article  PubMed  CAS  Google Scholar 

  64. Ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K. Activin receptor-like kinases: a novel subclass of cell surface receptors with predicted serine/threonine kinase activity. Oncogene 1993;8:2879–87.

    PubMed  CAS  Google Scholar 

  65. Tsuchida K, Mathews LS, Vale WW. Cloning and characterization of a transmem-brane serine kinase that acts as an activin type I receptor. Proc Natl Acad Sci USA 1993;90:11242–6.

    Article  PubMed  CAS  Google Scholar 

  66. Attisano L, Carcamo J, Ventura F, Weis FMB, Massagué J, Wrana JL. Identification of human activin and TGFβ type I receptors that form heterodimeric kinase complexes with type II receptors. Cell 1993;75:671–80.

    Article  PubMed  CAS  Google Scholar 

  67. He WW, Gustafson ML, Hirobe S, Donahoe PK. Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family. Dev Dynam. 1993;196:133–42.

    Article  CAS  Google Scholar 

  68. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet AL, Ventura F, Grant RA, et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 1994;14:5961–74.

    PubMed  CAS  Google Scholar 

  69. Carcamo J, Weis FMB, Ventura F, Weiser R, Wrana JL, Attisano L, Massagué J. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 1994;14:3810–21.

    PubMed  CAS  Google Scholar 

  70. Franzen P, Ichijo H, Miyazono K. Different signals mediate transforming growth factor-beta 1-induced growth inhibition and extracellular matrix production in prostatic carcinoma cells. Exp Cell Res 1993;207:1–7.

    Article  PubMed  CAS  Google Scholar 

  71. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994;269:16985–8.

    PubMed  Google Scholar 

  72. Tsuchida K, Sawchenko PE, Nishikawa S, Vale WW. Molecular cloning of a novel type I receptor serine/threonine kinase for the TGF-beta super family from rat brain. Mol Cell Neurosciences 1996;7:467–78.

    Article  CAS  Google Scholar 

  73. Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R. Determination of type I specificity by the type II receptors for TGF-beta or activin. Science 1993;262:900–2.

    Article  PubMed  CAS  Google Scholar 

  74. Brummel TJ, Twombly V, Marques G, Wrana JL, Newfeld SJ, Attisano L, Massagué J, O’Connor MB, Gelbart WM. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 1994;78:251–61.

    Article  PubMed  CAS  Google Scholar 

  75. Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 1994;79:169–79.

    Article  PubMed  CAS  Google Scholar 

  76. Penton A, Chen Y, Staehling-Hampton K, Wrana JL, Attisano L, Szidonya J, Cassill JA, Massagué, J, Hoffmann FM. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 1994;78:239–50.

    Article  PubMed  CAS  Google Scholar 

  77. Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 1994;91:10255–9.

    Article  PubMed  CAS  Google Scholar 

  78. Letsou A, Arora K, Wrana J, Simin K, Twombly V, Jamal J, Staehling-Hampton K, Hoffmann FM, Gelbart WM, Massagué J, O’Connor MB. Dpp signaling in Drosophila is mediated by the punt gene product: a dual ligand binding type II receptor of the TGFβ receptor family. Cell 1995;80:899–908.

    Article  PubMed  CAS  Google Scholar 

  79. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995;92:7632–6.

    Article  PubMed  CAS  Google Scholar 

  80. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature (Lond) 1994;70:341–7.

    Article  Google Scholar 

  81. Ruberte E, Marty T, Nellen D, Affolter M, Basler K. An absolute requirement for both the type II and type I receptors, Punt and Thick veins, for Dpp signaling in vivo. Cell 1995;80:889–97.

    Article  PubMed  CAS  Google Scholar 

  82. Willis SA, Zimmerman CM, Li L, Mathews LS. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol 1996;10:367–79.

    Article  PubMed  CAS  Google Scholar 

  83. Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signaling by the Activin receptor complex. Mol Cell Biol 1996;16:1066–73.

    PubMed  CAS  Google Scholar 

  84. Luo K, Lodish HF. Signaling by chimeric erythropoietin-TGF-beta receptors: homodimerization of the cytoplasmic domain of the type I TGF-beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J 1996;15(17)4485–96.

    PubMed  CAS  Google Scholar 

  85. Weis-Garcia F, Massagué J. Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J 1996;15:276–89.

    PubMed  CAS  Google Scholar 

  86. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 1994;269(31)20172–8.

    PubMed  CAS  Google Scholar 

  87. Cosman D. The hematopoietin receptor super family. Cytokine. 1993;5:95–106.

    Article  PubMed  CAS  Google Scholar 

  88. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990;61:203–12.

    Article  PubMed  CAS  Google Scholar 

  89. Mathews LS, Vale WW. Characterization of type II activin receptors. Binding, processing, and phosphorylation. J Biol Chem 1993;268:19013–8.

    PubMed  CAS  Google Scholar 

  90. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH. Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta-induced cellular responses. EMBO J 1996;15:6231–40.

    PubMed  CAS  Google Scholar 

  91. Carcamo J, Zentella A, Massagué J. Disruption of transforming growth factor beta signaling by a mutation that prevents transphosphorylation within the receptor complex. Mol Cell Biol 1995;15:1573–81.

    PubMed  CAS  Google Scholar 

  92. Tsuchida K, Vaughan JM, Wiater E, Gaddy-Kurten D, Vale WW. Inactivation of activin-dependent transcription by kinase-deficient activin receptors. Endocrinology 1995;136:5493–503.

    Article  PubMed  CAS  Google Scholar 

  93. Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995;14:2199–208.

    PubMed  CAS  Google Scholar 

  94. Chen RH, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature (Lond) 1995;377:548–52.

    Article  CAS  Google Scholar 

  95. Kawabata M, Imamura T, Miyazono K, Engel ME, Moses HL. Interaction of the transforming growth factor-beta type I receptor with farnesyl-protein transferase-alpha. J Biol Chem 1995;270:29628–31.

    Article  PubMed  CAS  Google Scholar 

  96. Wang T, Danielson PD, Li B, Shah PC, Kim SD, Donahoe PK. The p21(RAS) farnesyltransferase alpha subunit in TGF-beta and activin signaling. Science 1996;271:1120–2.

    Article  PubMed  CAS  Google Scholar 

  97. Wang T, Donahoe PK, Zervos AS. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 1994;265:674–6.

    Article  PubMed  CAS  Google Scholar 

  98. Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 1996;86:435–44.

    Article  PubMed  CAS  Google Scholar 

  99. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995;270:2008–11.

    Article  PubMed  CAS  Google Scholar 

  100. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996;272:1179–82.

    Article  PubMed  CAS  Google Scholar 

  101. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 1995;139:1347–58.

    PubMed  CAS  Google Scholar 

  102. Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development (Camb) 1996;122:2099–108.

    CAS  Google Scholar 

  103. Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development (Camb) 1996;122:2153–62.

    CAS  Google Scholar 

  104. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JD. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996;85:489–500.

    Article  PubMed  CAS  Google Scholar 

  105. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 1996;93:790–4.

    Article  PubMed  CAS  Google Scholar 

  106. Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta super family. Cell 1996;85:479–87.

    Article  PubMed  CAS  Google Scholar 

  107. Thomsen GH. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development (Camb) 1996;122:2359–66.

    CAS  Google Scholar 

  108. Riggins GJ. Mad-related genes in the human. Nat Genet 1996;347–9.

    Google Scholar 

  109. Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 1996;10:1880–9.

    Article  PubMed  CAS  Google Scholar 

  110. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–3.

    Article  PubMed  CAS  Google Scholar 

  111. Chen Y, Lebrun JJ, Vale WW. Regulation of transforming growth factor beta-and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci USA 1996;93:12992–7.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang Y, Feng XH, Wu RY, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature (Lond) 1996;383:168–72.

    Article  CAS  Google Scholar 

  113. Yingling JM, Das P, Savage C, Zhang M, Padgett RW, Wang XF. Mammalian dwarflns are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc Natl Acad Sci USA 1996;93:8940–4.

    Article  PubMed  CAS  Google Scholar 

  114. Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature (Lond) 1996;381:620–3.

    Article  CAS  Google Scholar 

  115. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways. Nature (Lond) 1996;383:832–6.

    Article  CAS  Google Scholar 

  116. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–52.

    Article  PubMed  CAS  Google Scholar 

  117. Marcias-Silva M, Abdollah S, Hoodless P, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGF-beta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996;87:1215–24.

    Article  CAS  Google Scholar 

  118. Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signaling. Nature (Lond) 1996;383:691–6.

    Article  CAS  Google Scholar 

  119. Rosa FM. Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 1989;57:965–74.

    Article  PubMed  CAS  Google Scholar 

  120. Huang HC, Murtaugh LC, Vize PD, Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J 1995;14:5965–73.

    PubMed  CAS  Google Scholar 

  121. Mead PE, Brivanlou IH, Kelley CM, Zon LI. BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein Mix. 1. Niature (Lond) 1996;382:357–60.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lebrun, JJ., Chen, Y., Vale, W.W. (1997). Receptor Serine Kinases and Signaling by Activins and Inhibins. In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics