Receptor Serine Kinases and Signaling by Activins and Inhibins

  • Jean-Jacques Lebrun
  • Yan Chen
  • Wylie W. Vale
Part of the Serono Symposia USA book series (SERONOSYMP)


Activins and inhibins were initially recognized for their important roles in the regulation of the anterior pituitary (reviewed in 1–6). Inhibins, which suppress the production of follicle-stimulating hormone (FSH), were isolated in 1985 by several groups (7–10). The purification of activins was first reported a year later, based on their ability to stimulate FSH secretion from the anterior pituitary (11, 12).


Follicular Fluid Activin Receptor Receptor Heteromerization Mullerian Inhibit Substance Activin Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Kretser DM, Robertson DM, Risbridger GP, Hedger MP, McLachlan RI, Burger HG, Findley JK. Prog Endocrinol 1988;13–23.Google Scholar
  2. 2.
    Dejong FH. Physiol Rev 1988;68:555–607.Google Scholar
  3. 3.
    Vale W, Rivier C, Hsueh A, Campen C, Meunier H, Bicsak T, Vaughan J, Corrigan A, Bardin W, Sawchenko P, et al. Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 1988;44:1–34.PubMedGoogle Scholar
  4. 4.
    DePaolo LV, Bicsak TA, Erickson GF, Shimasaki S, Ling N. Follistatin and activin: a potential intrinsic regulatory system within diverse tissues. Proc Soc Exp Biol Med 1991;198:500–12.Google Scholar
  5. 5.
    Bilezikjian LM, Vale WW. Local extragonadal roles of activins. Trends Endocrinol Metab 1992;3:218–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Mather JP, Woodruff TK, Krummen LA. Paracrine regulation of reproductive function by inhibin and activin. Proc Soc Exp Biol Med 1992;201:1–15.PubMedGoogle Scholar
  7. 7.
    Robertson DM, Foulds LM, Leversha L, Morgan FJ, Hearn MT,. Burger HG, Wettenhall RE, DeKretser DM. Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 1985;126:220–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Ling, N, Ying SY, Ueno N, Shimasaki S, Esch F, Denoroy L, Guillemin R. Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci USA 1985;82:7217–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Miyamoto K, Hasewaga Y, Fukuda M, Nomura M, Igarashi M, Kangawa K, Matsuo H. Isolation of porcine follicular fluid inhibin of 32K daltons. Biochem Biophys Res Commun 1985;129:396–403PubMedCrossRefGoogle Scholar
  10. 10.
    Rivier J, Spiess J, McClintock R, Vaughan J, Vale W. Purification and partial characterization of inhibin from porcine follicular fluid. Biochem Biophys Res Commun 1985;133:120–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature (Lond) 1986;321:776–9.CrossRefGoogle Scholar
  12. 12.
    Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature (Lond) 1986;321:779–82.CrossRefGoogle Scholar
  13. 13.
    Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying SY, Guillemin R, Niall H, Seeburg PH. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature (Lond) 1985;318:659–63.Google Scholar
  14. 14.
    Hotten G, Neidhart H, Schneider C, Pohl J. Cloning of a new member of the TGF-beta family: a putative new activin beta-C chain. Biochem Biophys Res Commun 1995;206:608–13.CrossRefGoogle Scholar
  15. 15.
    Oda S, Nishimatsu S, Murakami K, Ueno N. Molecular cloning and functional analysis of a new activin beta subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem Biophys Res Commun 1995;210:581–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Massagué, J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.PubMedCrossRefGoogle Scholar
  17. 17.
    Wozney, JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Cate, RL, Mattaliano RJ, Hession C, Tizzard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 1986;45:685–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Weeks, DL, Melton PA. A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 1987;51:861–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Padgett, RW, St. Johnson RD, Gelbart WM. The decapentapegic gene complex of Drosophila encodes a protein homologous to the transforming growth factor-beta gene family. Nature (Lond) 1987;232:81–84.CrossRefGoogle Scholar
  21. 21.
    Basler, K, Edlund T, Jessell T, Yamada T. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF-beta family member. Cell 1993;73:687–702.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou X, Sasaki H, Lowe L, Hogan B, Kuehn MR. Nodal is a novel TGF-beta like gene expressed in the mouse node during gastrulation. Nature (Lond) 1993;361:543–7.CrossRefGoogle Scholar
  23. 23.
    Daopin S, Piez KA, Ogawa Y, Davis DR. Crystal structure of transforming growth factor-beta 2: an unusual fold for the super family. Science 1992;257:369–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Schlunegger MP, Grutter MG. An unusual feature revealed by the crystal structure at 2.2 Å resolution of human transforming growth factor beta-2. Nature (Lond) 1992;358:430–4.CrossRefGoogle Scholar
  25. 25.
    Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale W. Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology 1991;128:1682–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Weiss J, Harris PE, Halvorson LM, Crowley WF, Jameson JL. Dynamic regulation of follicle-stimulating hormone-beta messenger ribonucleic acid levels by activin and gonadotropin-releasing hormone in perfused rat pituitary cells. Endocrinology 1992;131:1403–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Murata T, Ying SY. Transforming growth factor-beta and activin inhibit basal secretion of prolactin in a pituitary monolayer culture system. Proc Soc Exp Biol Med 1991;198:599–605.PubMedGoogle Scholar
  28. 28.
    Kitaoka M, Kojima I, Ogata E. Activin A: a modulator of multiple types of anterior pituitary cells. Biochem Biophys Res Commun 1988;157:48–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Billestrup N, Gonzalez-Manchon C, Potter E, Vale W. Inhibition of somatotroph growth and GH biosynthesis by activin in vitro. Mol Endocrinol 1990;4:356–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Bilezikjian LM, Corrigan A, Vale W. Activin A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 1990;126:2369–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Bilezikjian LM, Blount AL, Campen CA, Gonzalez-Manchon C, Vale W. Activin A inhibits POMC mRNA accumulation and ACTH secretion of AtT20 cells. Mol Endocrinol 1991;5:1389–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Hsueh AJ, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 1987;164:5082–6.CrossRefGoogle Scholar
  33. 33.
    Shaha C, Morris PL, Chen CL, Vale W, Bardin CW. Immunostainable inhibin subunits are in multiple types of testicular cells. Endocrinology 1989;125:1941–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM. Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 1990;127:3206–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Eto Y, Tsuji T, Takesawa M, Takano S, Yokogawa Y, Shibai H. Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 1987;142:1095–1103.PubMedCrossRefGoogle Scholar
  36. 36.
    Yu J, Shao L, Lemas V, Yu AL, Vaughan J, Rivier J, Vale WW. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature (Lond) 1987;330:765–7.CrossRefGoogle Scholar
  37. 37.
    Broxmeyer HE, Lu L, Cooper S, Schwall RH, Mason AJ, Nikolics K. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci USA 1988;5:9052.CrossRefGoogle Scholar
  38. 38.
    Lebrun JJ, Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation. Mol Cell Biol 1997;17:1682–91.PubMedGoogle Scholar
  39. 39.
    Hangoc G, Carow CE, Schwall R, Mason AJ, Broxmeyer HE. Effects in vivo of recombinant human inhibin on myelopoiesis in mice. Exp Hematol 1992;20:1243–6.PubMedGoogle Scholar
  40. 40.
    Matzuk MM, Finegold MJ, Su JGJ, Hsueh AJW, Bradley A. Alpha-inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature (Lond) 1992;336:313–9.CrossRefGoogle Scholar
  41. 41.
    Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA 1994;91:8817–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwall RH, Robbins K, Jardieu P, Chang L, Lai C, Terrell TG. Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 1993;18:347–56.PubMedGoogle Scholar
  43. 43.
    Yasuda H, Mine T, Shibata H, Eto Y, Hasegawa Y, Takeuchi T, Asano S, Kojima I. Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. J Clin Invest 1993;92:1491–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu J, McKeehan K, Matsuzaki K, McKeehan WL. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 1995;270:6308–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Brosh N, Sternberg D, Honigwachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hacham Y, Carmi P, et al. The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 1995;270:29594–600.PubMedCrossRefGoogle Scholar
  46. 46.
    Ogawa Y, Schmidt DK, Nathan RM, Amstrong RM, Miller KL, Sawamura SJ, Ziman JM, Erickson KL, Deleon ER, Rosen DM, et al. Bovine bone activin enhances bone morphogenetie protein-induced ectopic bone formation. J Biol Chem 1992;267:14233–7.PubMedGoogle Scholar
  47. 47.
    McCarthy SA, Bicknell R. Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 1993;268:23066–71.PubMedGoogle Scholar
  48. 48.
    Sawchenko PE, Plotsky PM, Pfeiffer W, Cunningham ET, Vaughan J, Rivier J, Vale W. Inhibin beta in central neural pathways involved in the control of oxytocin secretion. Nature (Lond) 1988;334:625–17.CrossRefGoogle Scholar
  49. 49.
    Gonzalez-Manchon C, Bilezikjian LM, Corrigan A, Mellon PL, Vale W. Activin-A modulates gonadotropin-releasing hormone secretion from a gonadotropin-releasing hormone-secreting neuronal cell line. Neuroendocrinology 1991;54:373–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Schubert D, Kimura H, Lacorbiere M, Vaughan J, Karr D, Fisher WH. Activin is a nerve cell survival molecule. Nature (Lond) 1990;344:968–79.CrossRefGoogle Scholar
  51. 51.
    Coulombe JN, Schwall R, Parent AS, Eckenstein FP, Nishi R. Induction of somatostatin immunoreactivity in cultured ciliary ganglion neurons by activin in choroid cell-conditioned medium. Neuron 1993;10:899–906.PubMedCrossRefGoogle Scholar
  52. 52.
    Asashima MH, Nakano K, Shimada K, Kinoshita K, Ishii K, Shibai H, et al. Mesodermal induction in early amphibian embryos by activin A. Roux’s Arch Dev Biol 1990;198:330–5.CrossRefGoogle Scholar
  53. 53.
    Smith JC, Price BM, Nimmen KV, Huylebroeck D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature (Lond) 1990;345:729–31.CrossRefGoogle Scholar
  54. 54.
    Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 1990;63:485–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Van den Eijnden van Raaij AJ, van Achterberg TA, van der Kruuijssen CM, Piersma AH, Huylebroeck D, de Laat SW, et al. Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech Dev 1991;33:157–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995;82:803–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 1991;65:973–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 1990;61:635–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Mathews LS, Vale WW, Kintner CR. Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 1992;255:1702–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Attisano, L, Wrana JL, Cheifetz S, Massagué J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 1992;68:97–108.PubMedCrossRefGoogle Scholar
  61. 61.
    Lin H, Wang XF, Ng-Eaton E, Weinberg R, Lodish H. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell 1992;68:775–85.PubMedCrossRefGoogle Scholar
  62. 62.
    Liu F, Ventura F, Doody J, Massagué J. Human type II receptor for bone morphogenetic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 1995;15:3479–86.PubMedGoogle Scholar
  63. 63.
    Ebner R, Chen RH, Shum L. Lawer S, Zioncheck TF, Lee A, Lopez AR, Derynck R. Cloning of type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 1993;260:1344–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Ten Dijke P, Ichijo H, Franzen P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K. Activin receptor-like kinases: a novel subclass of cell surface receptors with predicted serine/threonine kinase activity. Oncogene 1993;8:2879–87.PubMedGoogle Scholar
  65. 65.
    Tsuchida K, Mathews LS, Vale WW. Cloning and characterization of a transmem-brane serine kinase that acts as an activin type I receptor. Proc Natl Acad Sci USA 1993;90:11242–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Attisano L, Carcamo J, Ventura F, Weis FMB, Massagué J, Wrana JL. Identification of human activin and TGFβ type I receptors that form heterodimeric kinase complexes with type II receptors. Cell 1993;75:671–80.PubMedCrossRefGoogle Scholar
  67. 67.
    He WW, Gustafson ML, Hirobe S, Donahoe PK. Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-beta type II receptor family. Dev Dynam. 1993;196:133–42.CrossRefGoogle Scholar
  68. 68.
    Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet AL, Ventura F, Grant RA, et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 1994;14:5961–74.PubMedGoogle Scholar
  69. 69.
    Carcamo J, Weis FMB, Ventura F, Weiser R, Wrana JL, Attisano L, Massagué J. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 1994;14:3810–21.PubMedGoogle Scholar
  70. 70.
    Franzen P, Ichijo H, Miyazono K. Different signals mediate transforming growth factor-beta 1-induced growth inhibition and extracellular matrix production in prostatic carcinoma cells. Exp Cell Res 1993;207:1–7.PubMedCrossRefGoogle Scholar
  71. 71.
    ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994;269:16985–8.PubMedGoogle Scholar
  72. 72.
    Tsuchida K, Sawchenko PE, Nishikawa S, Vale WW. Molecular cloning of a novel type I receptor serine/threonine kinase for the TGF-beta super family from rat brain. Mol Cell Neurosciences 1996;7:467–78.CrossRefGoogle Scholar
  73. 73.
    Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R. Determination of type I specificity by the type II receptors for TGF-beta or activin. Science 1993;262:900–2.PubMedCrossRefGoogle Scholar
  74. 74.
    Brummel TJ, Twombly V, Marques G, Wrana JL, Newfeld SJ, Attisano L, Massagué J, O’Connor MB, Gelbart WM. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 1994;78:251–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 1994;79:169–79.PubMedCrossRefGoogle Scholar
  76. 76.
    Penton A, Chen Y, Staehling-Hampton K, Wrana JL, Attisano L, Szidonya J, Cassill JA, Massagué, J, Hoffmann FM. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 1994;78:239–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Suzuki A, Thies RS, Yamaji N, Song JJ, Wozney JM, Murakami K, Ueno N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 1994;91:10255–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Letsou A, Arora K, Wrana J, Simin K, Twombly V, Jamal J, Staehling-Hampton K, Hoffmann FM, Gelbart WM, Massagué J, O’Connor MB. Dpp signaling in Drosophila is mediated by the punt gene product: a dual ligand binding type II receptor of the TGFβ receptor family. Cell 1995;80:899–908.PubMedCrossRefGoogle Scholar
  79. 79.
    Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin CH, Miyazono K. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995;92:7632–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature (Lond) 1994;70:341–7.CrossRefGoogle Scholar
  81. 81.
    Ruberte E, Marty T, Nellen D, Affolter M, Basler K. An absolute requirement for both the type II and type I receptors, Punt and Thick veins, for Dpp signaling in vivo. Cell 1995;80:889–97.PubMedCrossRefGoogle Scholar
  82. 82.
    Willis SA, Zimmerman CM, Li L, Mathews LS. Formation and activation by phosphorylation of activin receptor complexes. Mol Endocrinol 1996;10:367–79.PubMedCrossRefGoogle Scholar
  83. 83.
    Attisano L, Wrana JL, Montalvo E, Massagué J. Activation of signaling by the Activin receptor complex. Mol Cell Biol 1996;16:1066–73.PubMedGoogle Scholar
  84. 84.
    Luo K, Lodish HF. Signaling by chimeric erythropoietin-TGF-beta receptors: homodimerization of the cytoplasmic domain of the type I TGF-beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J 1996;15(17)4485–96.PubMedGoogle Scholar
  85. 85.
    Weis-Garcia F, Massagué J. Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J 1996;15:276–89.PubMedGoogle Scholar
  86. 86.
    Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 1994;269(31)20172–8.PubMedGoogle Scholar
  87. 87.
    Cosman D. The hematopoietin receptor super family. Cytokine. 1993;5:95–106.PubMedCrossRefGoogle Scholar
  88. 88.
    Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990;61:203–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Mathews LS, Vale WW. Characterization of type II activin receptors. Binding, processing, and phosphorylation. J Biol Chem 1993;268:19013–8.PubMedGoogle Scholar
  90. 90.
    Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH. Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta-induced cellular responses. EMBO J 1996;15:6231–40.PubMedGoogle Scholar
  91. 91.
    Carcamo J, Zentella A, Massagué J. Disruption of transforming growth factor beta signaling by a mutation that prevents transphosphorylation within the receptor complex. Mol Cell Biol 1995;15:1573–81.PubMedGoogle Scholar
  92. 92.
    Tsuchida K, Vaughan JM, Wiater E, Gaddy-Kurten D, Vale WW. Inactivation of activin-dependent transcription by kinase-deficient activin receptors. Endocrinology 1995;136:5493–503.PubMedCrossRefGoogle Scholar
  93. 93.
    Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995;14:2199–208.PubMedGoogle Scholar
  94. 94.
    Chen RH, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-beta receptor. Nature (Lond) 1995;377:548–52.CrossRefGoogle Scholar
  95. 95.
    Kawabata M, Imamura T, Miyazono K, Engel ME, Moses HL. Interaction of the transforming growth factor-beta type I receptor with farnesyl-protein transferase-alpha. J Biol Chem 1995;270:29628–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang T, Danielson PD, Li B, Shah PC, Kim SD, Donahoe PK. The p21(RAS) farnesyltransferase alpha subunit in TGF-beta and activin signaling. Science 1996;271:1120–2.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang T, Donahoe PK, Zervos AS. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 1994;265:674–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang T, Li BY, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, Martin J, Manganaro T, Donahoe PK. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 1996;86:435–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995;270:2008–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 1996;272:1179–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 1995;139:1347–58.PubMedGoogle Scholar
  102. 102.
    Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development (Camb) 1996;122:2099–108.Google Scholar
  103. 103.
    Wiersdorff V, Lecuit T, Cohen SM, Mlodzik M. Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development (Camb) 1996;122:2153–62.Google Scholar
  104. 104.
    Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JD. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996;85:489–500.PubMedCrossRefGoogle Scholar
  105. 105.
    Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 1996;93:790–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta super family. Cell 1996;85:479–87.PubMedCrossRefGoogle Scholar
  107. 107.
    Thomsen GH. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development (Camb) 1996;122:2359–66.Google Scholar
  108. 108.
    Riggins GJ. Mad-related genes in the human. Nat Genet 1996;347–9.Google Scholar
  109. 109.
    Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev 1996;10:1880–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–3.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen Y, Lebrun JJ, Vale WW. Regulation of transforming growth factor beta-and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci USA 1996;93:12992–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang Y, Feng XH, Wu RY, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature (Lond) 1996;383:168–72.CrossRefGoogle Scholar
  113. 113.
    Yingling JM, Das P, Savage C, Zhang M, Padgett RW, Wang XF. Mammalian dwarflns are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth. Proc Natl Acad Sci USA 1996;93:8940–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature (Lond) 1996;381:620–3.CrossRefGoogle Scholar
  115. 115.
    Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways. Nature (Lond) 1996;383:832–6.CrossRefGoogle Scholar
  116. 116.
    Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui LC, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–52.PubMedCrossRefGoogle Scholar
  117. 117.
    Marcias-Silva M, Abdollah S, Hoodless P, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGF-beta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996;87:1215–24.CrossRefGoogle Scholar
  118. 118.
    Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signaling. Nature (Lond) 1996;383:691–6.CrossRefGoogle Scholar
  119. 119.
    Rosa FM. Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 1989;57:965–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang HC, Murtaugh LC, Vize PD, Whitman M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J 1995;14:5965–73.PubMedGoogle Scholar
  121. 121.
    Mead PE, Brivanlou IH, Kelley CM, Zon LI. BMP-4-responsive regulation of dorsal-ventral patterning by the homeobox protein Mix. 1. Niature (Lond) 1996;382:357–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jean-Jacques Lebrun
  • Yan Chen
  • Wylie W. Vale

There are no affiliations available

Personalised recommendations