Global Recursion Polynomial Expansions of the Green’s Function and Time Evolution Operator for the Schrödinger Equation with Absorbing Boundary Conditions

  • Vladimir A. Mandelshtam
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 89)

Abstract

We review and revise some recently developed iterative numerical techniques of solving the Time-Independent Wave Packet Schrödinger Equation (E—Ĥ)Ψ = X, which are especially suitable for calculations associated with a large many body scattering problem, requiring large basis sets (grids). The methods we consider take advantage of the particular way the wave equation depends on the energy E. Namely, when global polynomial expansions of the resolvent operator are used the energy-dependent solution can be generated simultaneously at many energies from essentially a single iterative procedure. A general problem in constructing a well behaved polynomial expansion of a function of operator argument, f(Ĥ), is how to incorporate absorbing boundary conditions (ABC) which would eliminate reflection effects caused by an artificial truncation of an infinite grid where Ĥ is defined. It is shown that this problem can be solved naturally by modifying the auxiliary equations (recursion relations) used to generate the interpolating polynomials; this avoids using non-Hermitian operators. In particular Chebyshev and Newtonian interpolation schemes are considered. While the latter is more general, the former allows one to obtain analytically very simple global recursion polynomial expansions for the ABC Green’s function and ABC time evolution operator.

Keywords

Agated Assure Berman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.H. Miller and B.M.D.D. Jansen op de Haar, J. Chem. Phys. 86, 6213 (1987).MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Neuhauser and M. Baer, J. Chem. Phys. 91, 4651 (1989)CrossRefGoogle Scholar
  3. [3]
    D.E. Manolopoulos, R.E. Wyatt and D.C. Clary, J. Chem. Soc. Faraday Trans. 86, 1641 (1990).CrossRefGoogle Scholar
  4. [4]
    G.J. Tawa, S.L. Mielke, D.G. Truhlar and D.W. Schwenke, J. Chem. Phys. 100, 5751 (1994).CrossRefGoogle Scholar
  5. [5]
    T. Seideman and W.H. Miller, J. Chem. Phys. 97, 2499 (1992).CrossRefGoogle Scholar
  6. [6]
    Y. Huang, W. Zhu, D.J. Kouri and D.K. Hoffman, Chem. Phys. Lett. 206, 96 (1993).CrossRefGoogle Scholar
  7. [7]
    Y. Huang, D.J. Kouri and D.K. Hoffman, Chem. Phys. Lett. 225, 37 (1994).CrossRefGoogle Scholar
  8. [8]
    Y. Huang, D.J. Kouri and D.K. Hoffman, J. Chem. Phys. 101, 10493 (1994).CrossRefGoogle Scholar
  9. [9]
    D.J. Kouri, Y. Huang, W. Zhu and D.K. Hoffman, J. Chem. Phys. 100, 3662 (1994).CrossRefGoogle Scholar
  10. [10]
    G.C. Groenenboom and D.T. Colbert J. Chem. Phys. 99, 9681 (1993)CrossRefGoogle Scholar
  11. [11]
    S.M. Auerbach and C. Leforestier, Comp. Phys. Comm. 78, 55 (1993).MATHCrossRefGoogle Scholar
  12. [12]
    V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys. 102, 7390 (1995)CrossRefGoogle Scholar
  13. [13]
    V.A. Mandelshtam and H.S. Taylor, J. Chem.Phys. 103, 2903 (1995).CrossRefGoogle Scholar
  14. [14]
    U. Peskin, A. Edlund and W.H. Miller, J. Chem. Phys. (1995), in press.Google Scholar
  15. [15]
    J. Antikainen, R. Friesner and C. Leforestier, J. Chem. Phys., 102, 1270 (1995).CrossRefGoogle Scholar
  16. [16]
    J.C. Light, LP. Hamilton and J.V. Lill, J. Chem. Phys. 82, 1400 (1985).CrossRefGoogle Scholar
  17. [17]
    D.J. Kouri, Y. Sun, R.C. Mowrey, J.Z.H. Zhang, D.G. Truhlar, K. Haug and D.W. Schwenke, in Mathematical Frontiers in Computational Chemical Physics, edited by D.G. Truhlar (Springer-Verlag, New York, 1988), p. 207; Y. Sun, D.J. Kouri, D.W. Schwenke and D.G. Truhlar, Comp. Phys. Comm. 63, 51 (1991).CrossRefGoogle Scholar
  18. [18]
    R. Kosloff and D. Kosloff, J. Comput. Phys. 63, 363 (1986).MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).CrossRefGoogle Scholar
  20. [20]
    B. Hartke, R. Kosloff and S. Ruhman, Chem. Phys. Lett. 158, 238 (1989); R. Kosloff, J. Phys. Chem. 92, 2087 (1988).CrossRefGoogle Scholar
  21. [21]
    M. Berman, R. Kosloff and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).CrossRefGoogle Scholar
  23. [23]
    G. Ashkenazi, R. Kosloff and H. Tal-Ezer, J. Chem. Phys. (1995), submitted.Google Scholar
  24. [24]
    R. Kosloff, private communication.Google Scholar
  25. [25]
    M.R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011 (1995).CrossRefGoogle Scholar
  26. [26]
    R. Baer and R. Kosloff, J. Chem. Phys. 99, 2534 (1995).CrossRefGoogle Scholar
  27. [27]
    G. Katz, R. Baer, R. Kosloff, Chem. Phys. Lett. 239, 230 (1995).CrossRefGoogle Scholar
  28. [28]
    U.V. Riss and H.-D. Meyer, J. Phys. B: At. Mol. Opt. Phys. 26, 4503 (1993).MathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Macias, S. Brouard and J.G. Muga, Chem. Phys. Lett. 228, 672 (1994).CrossRefGoogle Scholar
  30. [30]
    T.P. Grozdanov, V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys. 103, 7990 (1995).CrossRefGoogle Scholar
  31. [31]
    V.A. Mandelshtam, T.P. Grozdanov and H.S. Taylor, J. Chem. Phys. 103, 10074 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Vladimir A. Mandelshtam
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations