Skip to main content

Nonperturbative Approaches to Atomic and Molecular Multiphoton (Half-Collision) Processes in Intense Laser Fields

  • Conference paper
Multiparticle Quantum Scattering With Applications to Nuclear, Atomic and Molecular Physics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 89))

Abstract

In this article, we describe some recent development of generalized Flo- quet formalisms and computational methods for nonperturbative treatments of atomic and molecular multiphoton (half-collision) processes in intense and superintense laser fields. We start with a brief review of the conventional Floquet matrix techniques, applicable to multiphoton bound-bound transitions in finite-level systems in periodic fields, and their limitations. Several generalized Floquet formalisms, beyond the Floquet theorem, are then introduced for the treatment of more complicated systems, such as the many-mode Floquet theory for multi-frequency laser excitation with non-periodic Hamil- tonians, the non-Hermitian Floquet formalism for bound-free and free- free multiphoton ionization and dissociation etc. Finally we describe several recent case studies of strong- field processes using the generalized Floquet techniques: intensity-dependent ionization potential and threshold shift, a.c. Stark shifts of Rydberg states in strong fields, above- threshold multiphoton detachment of H~ in one-color, two-color, and pulsed laser fields, stabilization and ionization suppression of negative ions in superintense high-frequency laser fields, and laser- induced chemical bond softening and hardening and molecular stabilization, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent reviews of strong-field researches, see, for example, Atoms in Intense Laser Fields, Adv. At. Mol. Opt. Phys. Sup. 1, edited by M. Gavrila (Academic Press 1992).

    Google Scholar 

  2. See, for example, P.K. Aravind and J.O. Hirschfelder, J. Phys. Chem. 88 (1984) 4788.

    Article  Google Scholar 

  3. J.H. Shirley, Phys. Rev. 138 (1965) B979.

    Article  Google Scholar 

  4. G. Floquet, Ann. l’Ecol. Norm Sup. 12 (1883) 47; J. H. Poincar, Les Méthodes Nouvelles de la Mechanique Celeste, Vols. I, II, IV, (Paris, 1892, 1893, 1899).

    Google Scholar 

  5. For review of Floquet methods for two-level systems, see, D.R. Dion and J.O. Hirschfelder, Adv. Chem. Phys. 35 (1976) 265.

    Article  Google Scholar 

  6. For reviews on generalized Floquet formalisms and methods, see, (a) S.I. Chu, Adv. At. Mol. Phys. 21 (1985) 197; (b) S.I. Chu, Adv. Chem. Phys. 73 (1989) 739; (c) S.I. Chu, Phys. Rep. (1996).

    Article  Google Scholar 

  7. S.H. Autler and C.H. Townes, Phys. Rev. 100 (1955) 703.

    Article  Google Scholar 

  8. Numerous methods for numerical solution of periodically time-dependent Schrödinger equations have been developed. See ref. 6(a) for a review. See, also, W.J. Meath, R.A. Thuraisingham, and M.A. Kmetic, Adv. Chem. Phys. 73 (1989) 307; P.P. Friedmann, Adv. Chem. Phys. 73 (1989) 197; R.E. Wyatt, Adv. Chem. Phys. 73 (1989) 231.

    Article  Google Scholar 

  9. S.I. Chu, J.V. Tietz, and K.K. Datta, J. Chem. Phys. 77 (1982) 2968.

    Article  Google Scholar 

  10. (a) S.I. Chu and W.P. Reinhardt, Phys. Rev. Lett. 39 (1977) 1195; (b) S.I. Chu, Chem. Phys. Lett. 54 (1978) 367; (c) A. Maquet, S.I. Chu, and W.P. Reinhardt, Phys. Rev. A27 (1983) 2946.

    Article  Google Scholar 

  11. S.I. Chu and J. Cooper, Phys. Rev. A 32 (1985) 2769.

    Article  Google Scholar 

  12. S.I. Chu, J. Chem. Phys. 75 (1981) 2215.

    Article  Google Scholar 

  13. T.S. Ho, S.I. Chu and J.V. Tietz, Chem. Phys. Lett. 96 (1983) 464; T.S. Ho and S.I. Chu, J. Phys. B 17 (1984) 2101; T.S. Ho and S.I. Chu, Phys. Rev. A 31 (1985) 659; T.S. Ho and S.I. Chu, Phys. Rev. A 32 (1985) 377; K. Wang, T.S. Ho, and S.I. Chu, J. Phys. B 18 (1985) 4539.

    Article  Google Scholar 

  14. J.V. Tietz and S.I. Chu, Chem. Phys. Lett. 101 (1983) 446; K. Wang and S.I. Chu, Phys. Rev. A 39 (1989) 1800.

    Article  Google Scholar 

  15. T.S. Ho and S.I. Chu, Chem. Phys. Lett. 122 (1985) 327; T.S. Ho, K. Wang, and S.I. Chu, Phys. Rev. A 33 (1986) 1798; K. Wang and S.I. Chu, J. Chem. Phys. 86 (1987) 3225.

    Article  Google Scholar 

  16. Several stationary approaches using generalized Floquet formalisms for (arbitrarily) time-dependent Hamiltonian systems have been developed. See, for example, (a) Nonadiabatic coupled dressed-states formalism: T.S. Ho and S.I. Chu, Chem. Phys. Lett. 141 (1987) 315; (b) Two-mode Floquet treatment of multiphoton excitation by (arbitrarily shaped) laser pulses: Y. Huang and S.I. Chu, Chem. Phys. Lett. 225 (1994) 46.

    Article  Google Scholar 

  17. E. Balslev and J.M. Combes, Commun. Math. Phys. 22 (1971) 280; J. Aguilar and J.M. Combes, Commun. Math. Phys. 22 (1971) 265; B. Simon, Ann. Math. 97 (1973) 247.

    Article  MathSciNet  MATH  Google Scholar 

  18. See, for example, H.A. Yamani and W.P. Reinhardt, Phys. Rev. All (1975) 1144.

    Google Scholar 

  19. G. Yao and S.I. Chu, Chem. Phys. Lett. 204 (1993) 381.

    Article  Google Scholar 

  20. J. Wang, S.I. Chu, and C. Laughlin, Phys. Rev. A 50 (1994) 3208.

    Article  Google Scholar 

  21. C.C. Marston and G.G. Balint-Kurti, J. Chem. Phys. 91 (1989) 3571.

    Article  MathSciNet  Google Scholar 

  22. E. Layton and S.I. Chu, Chem. Phys. Lett. 186 (1991) 100.

    Article  Google Scholar 

  23. S.I. Chu, Chem. Phys. Lett. 167 (1990) 155.

    Article  Google Scholar 

  24. R.M. Potvliege and R. Shakeshaft, Adv. At. Mol. Opt. Phys. Sup. 1 (1992) 373.

    Google Scholar 

  25. S.I. Chu, K. Wang and E.J. Layton, J. Opt. Soc. Am. B 7 (1990) 425.

    Article  Google Scholar 

  26. S.I. Chu, J. Chem. Phys. 94 (1991) 7901.

    Article  Google Scholar 

  27. D. Telnov and S.I. Chu, Phys. Rev. A 50 (1994) 4099.

    Article  Google Scholar 

  28. D. Telnov, J. Wang, and S.I., Chu, Phys. Rev. A 51 (1995) 4797.

    Article  Google Scholar 

  29. D. Telnov and S.I. Chu, J. Phys. B 28 (1995) 2407.

    Google Scholar 

  30. For a recent review on stabilization of atoms in superintense laser fields, see, M. Gavrila, Adv. At. Mol. Phys. Sup. 1 (1992) 435.

    Google Scholar 

  31. G. Yao and S.I. Chu, Phys. Rev. A 45 (1992) 6735.

    Article  Google Scholar 

  32. (a) G. Yao and S.I. Chu, Chem. Phys. Lett. 192 (1992) 413; (b) G. Yao and S.I. Chu, Phys. Rev. A 48 (1993) 485.

    Article  Google Scholar 

  33. J. Wang and S.I. Chu, Chem. Phys. Lett. 227 (1994) 663.

    Article  Google Scholar 

  34. D. Telnov, J. Wang and S.I. Chu, Phys. Rev. A 51 (1995) 4797.

    Article  Google Scholar 

  35. S.I. Chu, Z.C. Wu, and E. Layton, Chem. Phys. Lett. 157 (1989) 151; E. Layton, Y. Huang, and S.I. Chu, Phys. Rev. A 41 (1990) 42.

    Article  MathSciNet  Google Scholar 

  36. T.S. Ho, S.I. Chu, and C. Laughlin, J. Chem. Phys. 81 (1984) 788; T.S. Ho, C. Laughlin, and S.I. Chu, Phys. Rev. A 32 (1985) 122.

    Google Scholar 

  37. K. Wang and S.I. Chu, Chem. Phys. Lett. 153 (1988) 87; S.I. Chu, Comm. At. Mol. Phys. 25 (1990) 101.

    Article  Google Scholar 

  38. T.W.B. Kibble, Phys. Rev. Lett. 16 (1966) 1054.

    Article  Google Scholar 

  39. See, for example, P. Agostini, P. Breger, A. L’Huillier, H.G. Muller, and G. Petite, Phys. Rev. Lett. 63 (1989) 2208.

    Article  Google Scholar 

  40. (a) C.Y. Tang, P.G. Harris, A.H. Mohagheghi, J.C. Bryant, C.R. Quick, J.B. Donahue, R.A. Reed, S. Cohen, W.W. Smith, and J.E. Steward, Phys. Rev. A 39 (1989) 6068; (b) W.W. Smith, C.Y. Tang, C.R. Quick, H.C. Bryant, P.G. Harris, A.H. Mohagheghi, J.B. Donahue, R.A. Reeder, H. Sharifian, J.E. Steward, H. Toutounchi, S. Cohen, T.C. Altman, and D.C. Rislove, J. Opt. Soc. Am. B 8 (1991) 17.

    Article  Google Scholar 

  41. C.Y. Tang, H.C. Bryant, P.G. Harris, A.H. Mohagheghi, R.A. Reeder, H. Sharifian, H. Toutounchi, C.R. Quick, J.B. Donahue, S. Cohen, and W.W. Smith, Phys. Rev. Lett. 66 (1991) 3124.

    Article  Google Scholar 

  42. C. Laughlin and S.I. Chu, Phys. Rev. A 48 (1993) 4654.

    Article  Google Scholar 

  43. A.L. Stewart, J. Phys. B11 (1978) 3852; A.W. Wishart, J. Phys. B 12 (1979) 3511.

    Google Scholar 

  44. For a review on ATI processes, see, R.R. Freeman and P.H. Bucksbaum, J. Phys. B 24 (1991) 325.

    Google Scholar 

  45. N. Bloembergen and E. Yablonovitch, Phys. Today 31 (1978) 23.

    Article  Google Scholar 

  46. P.A. Schulz, A.S. Sudbo, D.J. Krajnovich, H.S. Kowk, Y.R. Shen and Y.T. Lee, Ann. Rev. Phys. Chem. 30 (1979) 311.

    Article  Google Scholar 

  47. A. Carrington and J. Buttenshaw, Mol. Phys. 44 (1981) 267.

    Article  Google Scholar 

  48. C. Laughlin, K.K. Datta and S.I. Chu, J. Chem. Phys. 85 (1986) 1403; S.I. Chu, C. Laughlin and K.K. Datta, Chem. Phys. Lett. 98 (1983) 476.

    Article  Google Scholar 

  49. C. Cornaggia, D. Normand, J. Morellec, G. Mainfray and C. Manus, Phys. Rev. A 34 (1986) 207.

    Google Scholar 

  50. T.S. Luk and C.K. Rhodes, Phys. Rev. A 38 (1988) 6180.

    Article  Google Scholar 

  51. P.H. Bucksbaum, A. Zavriyev, H.G. Müller and D.W. Schumacher, Phys. Rev. Lett. 64 (1990) 1883.

    Article  Google Scholar 

  52. A. Giusti-Sugor, X. He, O. Atabek and F.M. Mies, Phys. Rev. Lett. 64 (1990) 515.

    Article  Google Scholar 

  53. A. Zavriyev, P.H. Bucksbaum, J. Squier and F. Saline, Phys. Rev. Lett. 70 (1993) 1077.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Chu, SI. (1997). Nonperturbative Approaches to Atomic and Molecular Multiphoton (Half-Collision) Processes in Intense Laser Fields. In: Truhlar, D.G., Simon, B. (eds) Multiparticle Quantum Scattering With Applications to Nuclear, Atomic and Molecular Physics. The IMA Volumes in Mathematics and its Applications, vol 89. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1870-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1870-8_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7318-9

  • Online ISBN: 978-1-4612-1870-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics