Advertisement

Towards Dependence in General Branching Processes

  • Peter Jagers
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 84)

Abstract

The exponential growth of expected population size and ensuing stabilization of composition can be obtained quite generally, even in branching populations with interaction between individuals, through conditioning the contribution of each individual by a suitable, individually adapted, historical a-algebra. Then process convergence can be established provided disjoint daughter populations compete or do not have very strongly positively correlated sizes, or at least not too many of them collaborate closely.

Key words

branching process population dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alsmeyer (1993) On the Markov renewal theorem Stoch. Proc. Appl. 50, 37–56.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R. C. Bradley (1992) On the spectral density and asymptotic normality of weakly dependent random fields. J. Theor. Probab. 5, 355–373.zbMATHCrossRefGoogle Scholar
  3. [3]
    P. Broberg (1987) Sibling Dependencies in Branching Populations. Thesis. Dep. Mathematics. Gothenburg U.Google Scholar
  4. [4]
    P. Broberg (1987) A note on the extinction probability of branching populations. Scand. J. Statist. 14, 125–129.MathSciNetzbMATHGoogle Scholar
  5. [5]
    P. Broberg (1988) Critical branching populations with reproductive sibling correlations. Stoch. Proc. Applic. 30, 133–147.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    H. Cohn and P. Jagers (1994) General branching processes in varying environment. Ann. Appl. Prob. 4, 184–193.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H. Cohn and F. Klebaner (1986) Geometric rate of growth in Markov chains with applications to population size dependent models with dependent offspring. Stoch. Anal. Appl. 4, 283—308.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Gyllenberg and G. F. Webb (1990) A nonlinear structured cell population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    M. Gyllenberg and G. F. Webb (1992) Asynchronous exponential growth of semigroups of nonlinear operators. J. Math. Anal. Appl. 167, 443–467.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    P. Jagers (1975) Branching Processes with Biological Applications. J. Wiley and Sons, Chichester.Google Scholar
  11. [11]
    P. Jagers (1989) Branching processes as Markov fields. Stoch. Proc. Appl. 32, 183–242.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    P. Jagers (1995) Branching processes as population dynamics. To appear in Bernoulli. Google Scholar
  13. [13]
    P. Jagers and O. Nerman (1995) The asymptotic composition of supercritical multi-type branching populations. To appear. Google Scholar
  14. [14]
    G. Keller, G. Kersting, and U. Rösler (1987) On the asymptotic behaviour of discrete time stochastic growth processes. Ann. Prob. 15, 305–343.zbMATHCrossRefGoogle Scholar
  15. [15]
    G. Kersting (1986) On recurrence and transience of growth models. J. Appl. Prob. 23, 614–625.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    F. Klebaner (1984) Geometric rate of growth in population size dependent branching processes. J. Appl. Prob. 21, 40–49.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    F. Klebaner (1985) A limit theorem for population size dependent branching processes. J. Appl. Prob. 22, 48–57.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    F. Klebaner (1989) Geometric growth in near-supercritical population size dependent multitype Galton-Watson processes. Ann. Prob. 17, 1466–1477.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    P. Küster (1983) Generalized Markov branching processes with state dependent offspring distribution. Z. Wahrscheinlichkeitstheorie verw. Geb. 64, 475–503.zbMATHCrossRefGoogle Scholar
  20. [20]
    P. Küster (1985) Asymptotic growth of controlled Galton-Watson processes. Ann. Prob. 13, 1157–1178.zbMATHCrossRefGoogle Scholar
  21. [21]
    O. Nerman (1981) On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 365–395.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    J. Neveu (1986) Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré 22,199–207.MathSciNetzbMATHGoogle Scholar
  23. [23]
    P. Olofsson (1994) General Branching Processes with Local Dependencies. Thesis, Dep. Mathematics, Chalmers U. Tech. and Gothenburg University.Google Scholar
  24. [24]
    P. Olofsson (1995) Branching processes with local dependencies. This volume. Google Scholar
  25. [25]
    B. A. Sevastyanov and A. M. Zubkov (1974) Controlled branching processes. Teor. veroyat. Primen. 19, 15–25.Google Scholar
  26. [26]
    V. M. Shurenkov (1984) On the theory of Markov renewal. Theory Prob. Appl. 29, 247–265.MathSciNetCrossRefGoogle Scholar
  27. [27]
    V. M. Shurenkov (1989) Ergodieeskie Processy Markova (Ergodic Markov Processes). Nauka, Moscow.Google Scholar
  28. [28]
    G. F. Webb (1985) Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peter Jagers
    • 1
  1. 1.Chalmers University of Technology, and Gothenburg UniversityGermany

Personalised recommendations