Skip to main content

On the Shape of the Wavefront of Branching Random Walk

  • Chapter
Classical and Modern Branching Processes

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 84))

Abstract

We consider branching random walk on the integers with bounded steps, and study the position X n of the left-most particle at time n. The random variables (Xn — EXn) are uniformly tight. In the critical case there are uncountably many limitpoints. We shall explain the associated changing shape of the wavefront from the viewpoints of both weak and strong convergence. The question of whether these two methods lead to the same solution leads to some new near-constancy phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggins, J.D., and Bingham, N.H., Near-constancy phenomena in branching processes, Math. Proc. Carob. Phil. Soc. 110 (1991), 545–558.

    MathSciNet  MATH  Google Scholar 

  2. Biggins, J., Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14 (1977), 630–636.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubuc, S., Etude théorique et numérique de la fonction de Karlin-McGregor, J. Analyse Math. 42 (1982), 15–37.

    Article  MathSciNet  Google Scholar 

  4. Dekking, F.M., and Host, B., Limit distributions for minimal displacement of branching random walks, J. Prob. Th. Rel. Fields 90 (1991), 403–426.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hammersley, J.M., Postulates of subadditive processes, Ann. Probab. 2 (1974), 652–680.

    Article  MathSciNet  MATH  Google Scholar 

  6. Joffe, A., Le Cam, L., and Neveu, J., Sur la loi des grands nombres pour des variables aléatoires de Bernoulli attachés à un arbre dyadique. C.R. Acad. Sci., Paris 277 (1973) 963–964.

    MATH  Google Scholar 

  7. Kingman, J.F.C., The first birth problem for an age-dependent branching process. Ann. Probab. 3 (1975), 790–801.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuczma, M., Choczewski, B., and Ger, R. Iterative functional equations, Enc. Math. Appl. 32, Cambridge Univ. Press, Cambridge (1990).

    Google Scholar 

  9. Karlin, S., and McGregor, J., Embeddability of discrete time simple branching processes into continuous time branching processes, Trans. Amer. Math. Soc. 132 (1968), 115–136.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dekking, F.M., Speer, E.R. (1997). On the Shape of the Wavefront of Branching Random Walk. In: Athreya, K.B., Jagers, P. (eds) Classical and Modern Branching Processes. The IMA Volumes in Mathematics and its Applications, vol 84. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1862-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1862-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7315-8

  • Online ISBN: 978-1-4612-1862-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics