Advertisement

How Fast Does a General Branching Random Walk Spread?

  • J. D. Biggins
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 84)

Abstract

New results on the speed of spread of the one-dimensional spatial branching process are described. Generalizations to the multitype case and to d dimensions are discussed. The relationship of the results with deterministic theory is also indicated. Finally the theory developed is used to re-prove smoothly (and improve slightly) results on certain data-storage algorithms arising in computer science.

Key words

spatial spread asymptotic speed propagation rate binary search tree CMJ process multitype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    De Acosta, A, Ney, P. and Nummelin, E. (1991) Large deviation lower bounds for general sequences of random variables. In Random Walks Brownian Mo­tion and Interacting Particle Systems eds. R. Durrett and H. Kesten; Progress in Probability 28 215–221. Birkhäuser Boston.CrossRefGoogle Scholar
  2. [2]
    Asmussen S. (1987) Applied Probability and Queues. John Wiley New York.zbMATHGoogle Scholar
  3. [3]
    Baccelli F., and Konstantopoulos, P. (1991) Estimates of cycle times in stochastic Perti nets. In Proceedings of the Rutgers Conference on Stochastic Processes ed. I. Karatzas. Springer Berlin.Google Scholar
  4. [4]
    Biggins J.D. (1976) The first and last birth problems for a multitype agedependent branching process. Adv. Appl. Probab. 8 446–459.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Biggins J.D. (1977) Chernoff’s Theorem in the branching random walk. Jnl. Appl. Probab. 14 630–636.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Biggins J.D. (1978) The asymptotic shape of the branching random walk. Adv. Appl. Prob. 10 62–84.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Biggins J.D. (1980) Spatial spread in branching processes. In Lecture notes in Biomathematics Biological Growth and Spread eds W. Jäger, H. Rost, P. Tautu, Springer Berlin 38 57–67.Google Scholar
  8. [8]
    Biggins, J.D., Lubachevsky, B., Shwartz, A., And Weiss, A,. (1991) Branching random walk with a barrier. Ann. Appl. Probab. 1 573–581.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Biggins J.D. (1995) Growth and spread of the general branching random walk. Ann. Appl. Probab. 5. Google Scholar
  10. [10]
    Van Den Bosch, F. Metz, J.A.J And Diekmann, O. (1990) The velocity of spatial population expansion. J. Math. Biol. 28 529–565.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Bramson M. (1978) Minimal displacement of branching random walk. Z. Wahrsch. verw. Gebeite. 45 89–108.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Bramson M. (1979) Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 531–581.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Bramson M. (1983) The convergence of solutions of the Kohnogorov non-linear diffusion equations to travelling waves. Mem. Amer. Math. Soc. 44(285).Google Scholar
  14. [14]
    Cohn H. (1985) A martingale approach to supercritical (CMJ) branching pro­cesses. Ann. Probab. 13 1179–1191.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Devroye L. (1986) A note on the height of binary search trees. J. Ass. Comput. Mach. 33 489–498.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Devroye L. (1987) Branching processes in the analysis of the heights of trees. Acta Inform. 24 277–298.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Devroye L. (1990) On the height of random m-ary search trees. Random Struc­tures and Algorithms. 1 191–203.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Doney R. (1976) On single and multitype general age-dependent branching pro­cesses. Jnl. Appl. Probab. 13 239–246.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Ellis R.S. (1984) Large deviations for a general class of random vectors. Ann. Probab. 12 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Gärtner J. (1977) On large deviations from the invariant measure. Theory Probab. Appl. 22 24–39.zbMATHCrossRefGoogle Scholar
  21. [21]
    Isofi M. And Newman C.M. (1994) Speed of parallel processing for random task graphs. Comm. Pure Appl. Math. 47 361–376MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Ivanoff G. (1980) The branching random field. Adv. Appl. Probab. 12 825–847.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Jagers P. (1975) Branching Processes with Biological Applications. Wiley New York.zbMATHGoogle Scholar
  24. [24]
    Jagers P. (1989), General branching processes as Markov fields. Stoc. Proc. Appl. 32183–212.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Jagers, P. (1995), Branching processes as population dynamics. Bernoulli. 1. Google Scholar
  26. [26]
    Kallenberg, O. (1977), Stability of critical cluster fields. Math. Nachr. 77 7–43.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Kingman, J.F.C. (1975), The first birth problem for an age-dependent branching process. Ann. Probab. 3 790–801.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Knuth, D.E. (1968), The Art of Computer Programming: Fundamental Algo­rithms. Addison-Wesley, Mass.Google Scholar
  29. [29]
    Lagarias,J. And Weiss, A., (1992), The 3x + 1 problem; two stochastic models. Ann. Applied Probability 2 229–261.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Laredo,C. ET Rouault, A. (1983), Grandes déviations, dynamique de popula­tions et phénomènes malthusiens. Ann. Inst. Henri Poincaré 19 323–350.MathSciNetzbMATHGoogle Scholar
  31. [31]
    Mahmoud, H.M. (1992), Evolution of Random Search trees. Wiley, New York.zbMATHGoogle Scholar
  32. [32]
    Mcdiarmid, C. (1995), Minimal positions in a branching random walk. Ann. Appl. Pro bab. 5 128–139.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Mollison, D. (1991), The dependence of epidemic and population velocities on basic parameters. Math. Biosciences. 107 255–287.zbMATHCrossRefGoogle Scholar
  34. [34]
    Nerman, O. (1981), On the convergence of supercritical general (C-M-J) branching process. Z. Wahrsch. verw. Gebeite. 57 365–395.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    Olofsson, P. (1994) General branching processes with local dependencies. Thesis, Dept Mathematics, Chalmers Univ. Tech. and Gothenburg Univ.Google Scholar
  36. [36]
    Pittel, B. (1984), On growing random binary trees. J. Math. Anal. Appl. 103 461–480.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    Robson, J.M. (1979), The height of binary search trees. Austral. Comput. Jnl. 11 151–153.MathSciNetGoogle Scholar
  38. [38]
    Ryan, T.A. (1968), On age-dependent branching processes. PhD thesis, Cornell Univ.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. D. Biggins
    • 1
  1. 1.Probability and Statistics Section, School of Mathematics and Statistics, Hicks BuildingThe University of SheffieldUK

Personalised recommendations