Skip to main content

Unsolved Problems Concerning Random Walks on Trees

  • Chapter
Classical and Modern Branching Processes

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 84))

Abstract

We state some unsolved problems and describe relevant examples concerning random walks on trees. Most of the problems involve the behavior of random walks with drift: e.g., is the speed on Galton-Watson trees monotonic in the drift parameter? These random walks have been used in Monte-Carlo algorithms for sampling from the vertices of a tree; in general, their behavior reflects the size and regularity of the underlying tree. Random walks are related to conductance. The distribution function for the conductance of Galton-Watson trees satisfies an interesting functional equation; is this distribution function absolutely continuous?

Article Footnote

Partially supported by an Alfred P. Sloan Foundation Research Fellowship (Pemantle), by NSF Grants DMS-9306954 (Lyons), DMS-9300191 (Pemantle), and DMS-9404391 (Peres), and by a Presidential Faculty Fellowship (Pemantle). The authors are grateful to the IMA at the University of Minnesota for its hospitality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berretti, A. and Sokal, A. D. (1985). New Monte Carlo method for the self-avoiding walk. J. Stat. Physics 40, 483–531.

    Article  MathSciNet  Google Scholar 

  • Billingsley, P. (1965). Ergodic Theory and Information. Wiley, New York.

    MATH  Google Scholar 

  • Feller, W. (1970). An Introduction to Probability Theory and Its Applications. Volume II, 2nd ed. Wiley, New York.

    Google Scholar 

  • Hawkes, J. (1981). Trees generated by a simple branching process, J. London Math. Soc. 24 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster, Ann. Inst. Henri Poincaré Probab. Statist. 22425–487.

    MathSciNet  MATH  Google Scholar 

  • Lawler, G. F. and Sokal, A. D. (1988). Bounds on the L2 spectrum for Markov chains and Markov processes: A generalization of Cheeger’s inequality. Trans. Amer. Math. Soc. 309 557–589.

    MathSciNet  MATH  Google Scholar 

  • Lyons, R. (1990). Random walks and percolation on trees, Ann. Probab. 18 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, R. (1992). Random walks, capacity, and percolation on trees, Ann. Probab. 20 2043–2088.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, R. (1994). Equivalence of boundary measures on covering trees of finite graphs, Ergodic Theory Dynam. Systems 14,575–597.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, R., Pemantle, R. and Peres, Y. (1995a). Ergodic theory on Galton-Watson trees: speed of random walk and dimension of har-monic measure. Ergodic Theory Dynamical Systems 15,593–619.

    Article  MathSciNet  Google Scholar 

  • Lyons, R., PEMANTLE, R. and PERES, Y. (1995b). Biased random walks on Galton-Watson trees, will appear in Probab. Theory Related Fields.

    Google Scholar 

  • Pemantle, R. and Peres, Y. (1995). Galton-Watson trees with the same mean have the same polar sets, Ann.Probab. 23 1102–1124.

    Article  MathSciNet  MATH  Google Scholar 

  • Peres, Y. (1992). Domains of analytic continuation for the top Lyapunov exponent, Ann. Inst. Henri Poincaré Probab. Statist. 28 131–148.

    MathSciNet  MATH  Google Scholar 

  • Randall, D. (1994). Counting in Lattices: Combinatorial Problems from Statistical Mechanics. Ph. D. thesis, University of California, Berkeley.

    Google Scholar 

  • Ruelle, D. (1979). Analyticity properties of the characteristic exponents of random matrix products, Adv. Math. 3268–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Sinclair, A. J. and Jerrum, M. R. (1989). Approximate counting, uniform generation and rapidly mixing Markov chains, Information and Computation 82,93–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyons, R., Pemantle, R., Peres, Y. (1997). Unsolved Problems Concerning Random Walks on Trees. In: Athreya, K.B., Jagers, P. (eds) Classical and Modern Branching Processes. The IMA Volumes in Mathematics and its Applications, vol 84. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1862-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1862-3_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7315-8

  • Online ISBN: 978-1-4612-1862-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics