Advertisement

Directed Polymers in Random Media and Spin Glass Models on Trees

  • F. Koukiou
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 84)

Abstract

Using some results of the theory of branching random walks, we give a unifying framework for the mean-field theory for models of spin glasses and directed polymers in a random medium defined on regular trees. Their phase diagram is studied in the complex plane of temperature.

Keywords

Spin Glass Random Medium Complex Weight Directed Polymer High Temperature Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Asmussen, S., Hering, H.: Branching processes, Birkhiuser, Basel (1983). zbMATHGoogle Scholar
  2. [2]
    Athreya, K. B., Ney, P. E.: Branching processes, Springer-Verlag, Berlin (1972). CrossRefzbMATHGoogle Scholar
  3. [3]
    Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Prob. 20 137–151 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14 25–37 (1977). MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Buffet, E., Patrick, A., Pulé, J.V.: Directed polymers on trees: a martingale approach. Preprint DIAS STP 91–34 (1991). Google Scholar
  6. [6]
    Chauvin, B., Rouault, A.: Boltzmann-Gibbs weights in the branching random walk. These proceedings.Google Scholar
  7. [7]
    Chayes, J.T., Chayes, L., Sethna, J.P., Thouless, D.J.: A mean field spin glass with short-range interactions. Commun. Math. Phys. 106 41–89 (1986). MathSciNetCrossRefGoogle Scholar
  8. [8]
    Collet, P., Koukiou, F.: Large deviations for multiplicative chaos. Commun. Math. Phys. 147 329–342 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B24, 2613–2626 (1981). MathSciNetGoogle Scholar
  10. [10]
    Derrida, B.: A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46 L401–407 (1985). MathSciNetCrossRefGoogle Scholar
  11. [11]
    Derrida, B.: Directed polymers in a random medium. Physica A163 71–84 (1990). MathSciNetGoogle Scholar
  12. [12]
    Derrida, B., Evans, M.R., Speer, E.R.: Mean field theory of directed polymers with random complex weights. Commun. Math. Phys. 156 221–244 (1993). MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Derrida, B., Spohn, H.: Polymers on Disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51 817–840 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F5, 965–974 (1975). CrossRefGoogle Scholar
  15. [15]
    Grimmett, G.: Percolation. Springer-Verlag, Berlin (1989). zbMATHGoogle Scholar
  16. [16]
    Holley, R., Waymire, E.C.: Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Prob. 2 819–845 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Kahane, J.-P., Peyrière, J.: Sur certaines martingales de Benoit Mandelbrot. Adv. in Math. 22 131–145 (1976). CrossRefzbMATHGoogle Scholar
  18. [18]
    Koukiou, F.: A random covering interpretation for the phase transition of the random energy model. J. Stat. Phys. 60, 669–674 (1990). MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Koukiou, F.: Rigorous bounds for the free energy of the short-range Ising spin glass model. Europhys. Lett.17 669–671 (1992). MathSciNetGoogle Scholar
  20. [20]
    Koukiou, F.: The spin glass model on diamond lattices. J. Phys. A 28 2737–2743 (1995). MathSciNetGoogle Scholar
  21. [21]
    Koukiou, F., Picco, P.: Poisson point processes, cascades and random coverings of Rn . J. Stat. Phys. 62 481-489 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Neveu, J.: Discrete-parameter martingales. Amsterdam- North-Holland 1975. (1986). Google Scholar
  23. [23]
    Parisi, G.: On the replica approach to random directed polymers in two dimension. J. Physique 51 1595–1606 (1990). MathSciNetCrossRefGoogle Scholar
  24. [24]
    Ruelle, D.: Thermodynamic formalism. Addison-Wesley (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • F. Koukiou
    • 1
    • 2
  1. 1.Groupe de Physique StatistiqueUniversité de Cergy-PontoiseCergy-Pontoise CedexFrance
  2. 2.Centre de Physique ThéoriqueEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations