Population and Density Dependent Branching Processes

  • F. C. Klebaner
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 84)


This paper gives results on branching processes in which the offspring distribution is a function of the current population size or density. Some interesting phenomena in such processes which do not occur in the classical models are given.


Exit Time Deterministic System Stable Limit Cycle Extinction Probability Stable Fixed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Friedlin M.I. and Wentzel A.D. (1984) Random Pertrwbations of Dynamical Systems. Springer.CrossRefGoogle Scholar
  2. [2]
    Hopfner R. (1985) On some classes of population size dependent Galton-Watson processes. J. Appl. Probab. 22, 25–36.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Kersting G. (1992) Asymptotic F distribution for stochastic difference equation. Stock. Proc. Appl. 40, 15–28.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Kifer Y. (1990) A discrete time version of the Wentzell-Freidlin theory. Ann. Probab. 18, 1676–1692.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Klebaner F.C. (1983) Population size dependent branching process with linear rate of growth. J. Appl. Probab. 20, 242–250.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Klebaner F.C. (1984) On population size dependent branching processes. Adv. Appl. Probab. 16, 30–55.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Klebaner F.C. (1984) Geometric growth in population-size-dependent branching processes. J. Appl. Probab. 21, 40–49.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Klebaner F.C. (1985) A limit theorem for population-size-dependent branching processes. J. Appl. Probab. 22, 48–57.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Klebaner F.C. (1989) Stochastic difference equations and generalized gamma distribution. Ann. Probab. 17, 178–188.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Klebaner F.C. (1993) Population dependent branching processes with a threshold. Stoch. Proc. Appl. 46, 115–127.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Klebaner F.C. and Nerman O. (1994) Autoregressive approximation in branching processes with a threshold. Stoch. Proc. Appl. 51, 1–7.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Klebaner F.C. and Zeitouni O. (1994) The exit problem for a class of period doubling systems. Ann. Appl. Probab. 4, 1188–1205.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Kuster P. (1985) Asymptotic growth of controlled Galton-Watson processes. Ann. Probab. 13, 1157–1178.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Thompson M.T. and Stewart H.B. (1986) Nonlinear Dynamics and Chaos. Wiley. Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • F. C. Klebaner
    • 1
  1. 1.Statistics DepartmentUniversity of MelbourneParkvilleAustralia

Personalised recommendations