Advertisement

Efficient Portfolios and Hedging Portfolios

  • Christian Gouriéroux
Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Among the major applications of ARCH models is the estimation of volatility evolving in time. This estimation allows one to compare portfolios or to build them with desired properties, for instance, those that maximize the expected utility of their return or allow one to hedge several sources of risk.

Keywords

Conditional Distribution Option Price Optimal Portfolio Risky Asset Asymptotic Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arrow, K.J. (1953) Le rôle des valeurs boursières pour la répartition la meilleure des risques, Paris: CNRS Econométrie.Google Scholar
  2. Arrow, K.J. (1963) “The Role of Securities in the Optimal Allocation of Risk-Bearing”, Review of Economic Studies, 31, 91–96.CrossRefGoogle Scholar
  3. Chamberlain, G. (1983) “A Characterization of the Distribution that Imply Mean- Variance Utility Functions”, Journal of Econometric Theory, 29, 185–201.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Copeland, T. and E Weston (1984) Financial Theory and Corporate Policy, Reading, MA: Addison—Wesley.Google Scholar
  5. Hanoch, G. and H. Levy (1969) “The Efficiency of Choice Involving Risk”, Review of Economic Studies, 36, 335–346.zbMATHCrossRefGoogle Scholar
  6. Huang, C.F. and R. Litzenberger (1988) Foundations for Financial Economics, Amsterdam: North-Holland.zbMATHGoogle Scholar
  7. Kroll, Y., Levy, H. and H. Markowitz (1984) “Mean-Variance Versus Direct Utility Maximization”, Journal of Finance, 39, 47–62.CrossRefGoogle Scholar
  8. Lee, S. and A. Lerro (1973) “Optimizing the Portfolio Selection for Mutual Funds”, Journal of Finance, 28, 1087–1102.CrossRefGoogle Scholar
  9. Levy, H. and H. Markowitz (1979) “Approximating Expected Utility by a Function of Mean and Variance”, American Economic Review, 69.Google Scholar
  10. Lintner, J. (1965) “Valuation of Risk Asset and the Selection of Risky Investments in Stock Portfolios and Capital Budgets”, Review of Economics and Statistics, 47, 13–37.CrossRefGoogle Scholar
  11. Malinvaud, E. (1969) “First Order Certainty Equivalence”, Econometrica, 37, 706–718.zbMATHCrossRefGoogle Scholar
  12. Markowitz, H. (1952) “Portfolio Selection”, Journal of Finance, 7, 77–91.Google Scholar
  13. Markowitz, H. (1976) Portfolio Selection, New Haven, CT: Yale University Press.Google Scholar
  14. Markowitz, H. (1992) Mean-Variance Analysis in Portfolio Choice and Capital Markets, Oxford: Blackwell.Google Scholar
  15. Merton, R. (1972) “An Analytical Derivation of the Efficient Portfolio Frontier”, Journal of Financial and Quantative Analysis, 7, 1851–1872.CrossRefGoogle Scholar
  16. Pulley, L. (1981) “A General Mean-Variance Approximation to Expected Utility for Short Holding Periods”, Journal of Financial and Quantitative Analysis, 16, 361–373.CrossRefGoogle Scholar
  17. Rothschild, M. (1986) “Asset Pricing Theories”, in Essays in Honor of Arrow, (Heller et al., Eds.) Cambridge: Cambridge University Press.Google Scholar
  18. Ross, S. (1978) “Mutual Fund Separation in Financial Theory. The Separating Distribution”, Journal of Economic Theory, 17, 254–286.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Roy, A. (1952) “Safety First and the Holding of Assets”, Econometrica, 20, 431–449.zbMATHCrossRefGoogle Scholar
  20. Samuelson, P. (1970) “The Fundamental Approximation Theorem of Portfolio Analysis in Terms of Means, Variances, and Higher Moments”, The Review of Economic Studies, 37, 537–542.CrossRefGoogle Scholar
  21. Sharpe, W.F. (1963) “A Simplified Model for Portfolio Analysis”, Management Science, 9, 277–293.CrossRefGoogle Scholar
  22. Sharpe, W.F. (1964) “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk”, The Journal of Finance, 19, 425–442.Google Scholar
  23. Sharpe, W.F. (1970) Portfolio Theory and Capital Markets, New York: McGraw-Hill.Google Scholar
  24. Sharpe, W.F. (1984) “Factor Models, CAPM’s and the A.P.T.”, Journal of Porffolio Management,11, 21–25. CrossRefGoogle Scholar
  25. Treynor, J.L. (1961) “Towards a Theory of Market Values of Risky Assets”, Mimeograph.Google Scholar
  26. Carlson, R. (1967) “Aggregate Performance of Mutual Funds”, Journal of Financial and Quantitative Analysis, 5, 1–51.CrossRefGoogle Scholar
  27. Gendron, M. (1988) “Mesures de performance et économie de l’information. Une synthése de la littérature théorique”, in Incertain et Information, (G. Dionne, Ed.) Economica.Google Scholar
  28. Gouriéroux, C. and F. Jouneau (1995) “Fitted Efficient Portfolios”, Discussion Paper. Paris: Centre de Recherche en Economie et Statistique.Google Scholar
  29. Jensen, M. (1968) “The Performance of Mutual Funds in the Period, 1945–1964”, Journal of Finance, 23, 389–416.CrossRefGoogle Scholar
  30. Jobson, J. and R. Korkie (1980) “Estimation for Markowitz Efficient Portfolios”, Journal of the American Statistical Association, 75, 544–554.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Jobson, J. and R. Korkie (1981) “Performance Hypothesis Testing with the Sharpe and Treynor Measures”, Journal of Finance, 36, 889–908.CrossRefGoogle Scholar
  32. Jobson, J. and R. Korkie (1982) “Potential Performance and Tests of Portfolio Efficiency”, Journal of Financial Economics, 10, 433–466.CrossRefGoogle Scholar
  33. Jobson, J. and R. Korkie (1989) “A Performance Interpretation of Multivariate Tests of Assets Set Intersection, Spanning and Mean-Variance Efficiency”, Journal of Financial and Quantitative Analysis, 24, 183–204.CrossRefGoogle Scholar
  34. Roll, R. (1977) “A Critique of the Asset Pricing Theory’s Test”, Journal of Financial Economics, 4, 129–176.CrossRefGoogle Scholar
  35. Roll, R. (1980) “Performance Evaluation and Benchmark Errors”, Journal of Portfolio Management, 5–11.Google Scholar
  36. Ross, S. (1980) “A Test of the Efficiency of a Given Portfolio”, presented at ESEM, Aix en Provence.Google Scholar
  37. Black, F. and M. Scholes (1973) “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, 81, 637–654.CrossRefGoogle Scholar
  38. Gouriéroux, C. and J.P. Laurent (1995) “Estimation of a Dynamic Hedge”, Dis-cussion Paper 95. Paris: Centre de Recherche on Economie et Statistique.Google Scholar
  39. Koopmans, T. (1951) Analysis of Production as an Efficient Combination of Activities, New Haven, CT: Yale University Press.Google Scholar
  40. Treynor, J. (1965) “How to Rate Management Funds”, Harvard Business Review, 43, 36–75.Google Scholar
  41. Chamberlain, G. and M. Rothschild (1983) “Arbitrage, Factor Structure and Mean Variance Analysis on Large Asset Markets”, Econometrica, 51, 1281–1301.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Chamberlain, G. (1983) “Funds, Factors and Diversification in Arbitrage Pricing Models”, Econometrica, 51, 1305–1323.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Chen, N. and J. Ingersoll (1983) “Exact Pricing in Linear Factor Models with Infinitely Many Assets: A Note”, Journal of Finance, 38, 985–988.CrossRefGoogle Scholar
  44. Dybvig, P. (1983) “An Explicit Bound on Deviations from A.P.T. Pricing in a Finite Economy”, Journal of Financial Economics, 12, 483–496.CrossRefGoogle Scholar
  45. Ehrardt, M. (1987) `A Mean-Variance Derivation of a Multi-factor Equilibrium Model“, Journal of Financial and Quantitative Analysis, 22, 227–236.CrossRefGoogle Scholar
  46. Huberman, G. (1952) “A Simple Approach to Arbitrage Pricing Theory”, Journal of Economic Theory, 28, 183–191.CrossRefGoogle Scholar
  47. Ingersoll, J. (1984) “Some Results in the Theory of Arbitrage Pricing”, Journal of Finance, 39, 1021–1039.CrossRefGoogle Scholar
  48. Milne, F. (1988) “Arbitrage and Diversification in a General Equilibrium Asset Economy”, Econometrica, 56, 815–840.MathSciNetzbMATHCrossRefGoogle Scholar
  49. Ross, S.A. (1976) “The Arbitrage Theory of Capital Asset Pricing”, Journal of Economic Theory, 17, 254–286.CrossRefGoogle Scholar
  50. Trzcinka, C. (1986) “On the Number of Factors in the Arbitrage Pricing Model”, The Journal of Finance, 2, 347–368.CrossRefGoogle Scholar
  51. Connor, G. (1984) “A Unified Beta Pricing Theory”, Journal of Economic Theory, 34, 13–31.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Connor, G. and R. Korajczyk (1988) “Risk and Return in an Equilibrium A.P.T.”, Journal of Financial Economics, 21, 255–289.CrossRefGoogle Scholar
  53. Gouriéroux, C., Monfort, A. and E. Renault (199la) “Modèles Dynamiques á Facteurs”, Discussion Paper. Paris: Centre pour la Recherche en Economie Mathematique Appliquée à la Planification.Google Scholar
  54. Gouriéroux, C., Monfort, A., and E. Renault (1991b) “A General Framework for Factor Models”, Discussion Paper. Paris: Institute Nationale de la Statistique et des Etudes Economiques.Google Scholar
  55. Grinblatt, M. and S. Titman (1983) “Factor Pricing in a Finite Economy”, Journal of Financial Economics, 12, 497–508.CrossRefGoogle Scholar
  56. Grinblatt, M. and S. Titman (1984) “The Relationship Between Mean Variance Efficiency and Arbitrage Pricing”, Discussion Paper 4–83. Los Angeles: University of California—Los Angeles.Google Scholar
  57. Huberman, G., Kandel, S. and R. Stambaugh (1987) “Mimicking Portfolios and Exact Arbitrage Pricing”, Journal of Finance, 42, 1–9.MathSciNetCrossRefGoogle Scholar
  58. Affleck-Graves, J. and B. McDonalds (1990) “Multivariate Tests of Asset Pricing: The Comparative Power of Alternative Statistics”, Journal of Financial and Quantitative Analysis, 25, 163–185.CrossRefGoogle Scholar
  59. Black, F., Jensen, M. and M. Scholes (1972) “The Capital Asset Pricing Model: Some Empirical Tests”, in Studies in the Theory of Capital Markets, (M. Jensen, Eds.) New York: Praeger. pp. 79–121.Google Scholar
  60. Brown, S. (1989) “The Number of Factors in Security Returns”, The Journal of Finance, 44, 1247–1262.CrossRefGoogle Scholar
  61. Burmeister, E. and M. McElroy (1991) “The Residual Market Factor, the APT and Mean Variance Efficiency”, Review of Quantitative Finance and Accounting, 1, 27–50.CrossRefGoogle Scholar
  62. Cheng, P. and R. Grauer (1980) “An Alternative Test of the Capital Asset Pricing Model”, American Economic Review, 70, 660–671.Google Scholar
  63. Fama, E. and J. MacBeth (1973) “Risk, Return and Equilibrium: Empirical Tests”, Journal of Political Economy, 81, 607–636.CrossRefGoogle Scholar
  64. Ferson, W. (1983) “Expected Real Interest Rates and Consumption in Efficient Financial Markets: Empirical Tests”, Journal of Financial and Quantitative Analysis, 18, 477–498.CrossRefGoogle Scholar
  65. Ferson, W., Kandel, S. and R. Stambaugh (1987) “Tests of Asset Pricing with Time Varying Expected Risk Premiums and Market Betas”, Journal of Finance, 42, 201–220.CrossRefGoogle Scholar
  66. Gibbons, M. (1982) “Multivariate Tests of Financial Models: A New Approach”, Journal of Financial Economics, 10,3–27.CrossRefGoogle Scholar
  67. Gibbons, M., Ross, S. and J. Shanken (1989) “A Test of the Efficiency of a Given Portfolio”, Econometrica, 57, 1121–1152.MathSciNetzbMATHCrossRefGoogle Scholar
  68. Jobson, J. and R. Korkie (1980) “Estimation of Markowitz Efficient Portfolio”, Journal of the American Statistical Association, 75, 544–554.MathSciNetzbMATHCrossRefGoogle Scholar
  69. Jobson, J. and R. Korkie (1982) “Potential Performance and Tests of Portfolio Efficiency”, Journal of Financial Economics, 10, 433–466.CrossRefGoogle Scholar
  70. Jobson, J. and R. Korkie (1989) “A Performance Interpretation of Multivariate Tests of Asset Set Intersection, Spanning and Mean Variance Efficiency”, Journal of Financial and Quantitative Analysis, 24, 183–204.CrossRefGoogle Scholar
  71. Kandel, S. (1986) “The Geometry of the Maximum Likelihood Estimator of the Zero-Beta Return”, The Journal of Finance, 2, 339–346.MathSciNetCrossRefGoogle Scholar
  72. Lehmann, B. and D. Modest (1985) “Mutual Fund Performance Evaluation: A Comparison of Benchmarks and Benchmarks Comparisons”, Journal of Finance, 42, 233–266.CrossRefGoogle Scholar
  73. Shanken, J. (1982) “The Arbitrage Pricing Theory: Is it Testable?”, Journal of Finance, 37, 1112–1140.CrossRefGoogle Scholar
  74. Stambaugh, R. (1982) “On the Exclusion of Assets from Tests of the Two Parameters Model: A Sensitivity Analysis”, Journal of Financial Economics, 10, 237–268.CrossRefGoogle Scholar
  75. Stambaugh, R. (1983) “Arbitrage Pricing with Information”, Journal of Financial Economics, 12, 357–370.CrossRefGoogle Scholar
  76. Carlson, R. (1970) “Aggregate Performance of Mutual Funds”, Journal of Financial and Quantitative Analysis, 5, 1–31.CrossRefGoogle Scholar
  77. Cranshaw, T. (1977) “The Evaluation of Investment Performance”, Journal of Business, 50, 468–485.Google Scholar
  78. McDonald, J. (1973) “French Mutual Fund Performance: Evaluation of Internationally Diversified Portfolios”, The Journal of Finance, 28, 1161–1180.CrossRefGoogle Scholar
  79. Dybvig, P. and S. Ross (1985) “Differential Information and Performance Measurement Using a Security Market Line”, The Journal of Finance, 40, 383–399.CrossRefGoogle Scholar
  80. Fama, E. (1972) “Components of Investment Security Performance”, Journal of Finance, 27, 63–72.Google Scholar
  81. Gendron, M. (1988) “Mesures de performance et économie de l’information, une synthèse de la littérature théorique”, in Incertain et Information, (G. Dionne, Ed.) Paris: Economica.Google Scholar
  82. Good, W. (1983) “Measuring Performance”, Financial Analysis Journal, 39, 19–23.CrossRefGoogle Scholar
  83. Jensen, M. (1968) “The Performance of Mutual Funds in the Period 1945–1964”, Journal of Finance, 23, 389–416.CrossRefGoogle Scholar
  84. Jensen, M. (1972) “Optimal Utilization of Market Forecasts and the Evaluation of Investment Performance”, in Mathematical Models in Investment and Finance, (G. Szego and K. Shell, Eds.) Amsterdam: North-Holland.Google Scholar
  85. Mayers, D. and E. Rice (1979) “Measuring Portfolio Performance and the Empirical Content of Asset Pricing Models”, Journal of Financial Economics, 7, 3–28.CrossRefGoogle Scholar
  86. Moses, E., Cheyney, J. and T. Veit (1987) “A New and More Complete Performance Measure”, Journal of Portfolio Management, 4, 24–33.CrossRefGoogle Scholar
  87. Roll, R. (1978) “Ambiguity when Performance is Measured by the Securities Market Line”, The Journal of Finance, 33, 1031–1069.CrossRefGoogle Scholar
  88. Roll, R. (1980) “Performance Evaluation and Benchmarks Errors”, Journal of Portfolio Management, 5–11.Google Scholar
  89. Sharpe, W. (1966) “Mutual Fund Performance”, Journal ofBusiness, 39,119–138.Google Scholar
  90. Gouriéroux, C. and A. Monfort (1995) Statistics and Econometric Models, Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  91. Anderson, T.W. (1958) An Introduction to Multivariate Analysis, New York: Wiley.zbMATHGoogle Scholar
  92. Muirhead, R. (1982) Aspects of Multivariate Statistical Theory, New York: Wiley.zbMATHCrossRefGoogle Scholar
  93. Bickel, J. and D. Freedman (1981) “Some Asymptotic Theory for the Bootstrap” Annals of Statistics, 9, 1196–1217.MathSciNetzbMATHCrossRefGoogle Scholar
  94. Efron, B. (1982), The Jacknife, the Bootstrap and Other Resampling Plans, Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Christian Gouriéroux
    • 1
  1. 1.Centre de Recherche en Economie et StatistiqueLaboratoire de Finance-AssuranceMalakoff CedexFrance

Personalised recommendations