Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 348 Accesses

Abstract

The various phenomena discussed in the preceding chapters are among the large number of problems described by systems of nonlinear differential equations which depend on one or more control parameters (e.g., the temperature gradient across the boundaries of a Rayleigh-Bénard cell, the angular velocity of the cylinders of a Taylor-Couette apparatus, the concentration of some reactive species in chemically active media, etc.). When studying these problems, one often wishes to know what are the fixed points of the dynamics, their stability, and their dependence on the control parameters. Furthermore, since multistability easily occurs in these systems, it is important to know, for practical purposes, how and why a particular state may be selected. The basic concepts that are needed to answer these questions and that are at the origin of the methods used throughout this book will be summarized here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York (1974).

    MATH  Google Scholar 

  2. R. Fitz-Hugh, Impulses and physiological states in theoretical models of nerve membranes, Biophys. J. 1, 445 (1961).

    Article  Google Scholar 

  3. H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, vol.I, Paris (1892).

    Google Scholar 

  4. A. A. Andronov and A. Witt, C. R. Acad. Sci. Paris,190, 256 (1930).

    Google Scholar 

  5. E. Hopf, Ber. Math. Phys., Sachsische Akademie der Wissenschaften Leipzig 94, 1 (1942).

    Google Scholar 

  6. D.S. Schmidt in The Hopf Bifurcation and its Applications, J. E. Marsden and M. Mc Cracken eds., Springer-Verlag, New York (1976), p.95.

    MATH  Google Scholar 

  7. A. Kelley in Transversal Mappings and Flows, R. Abraham and J. Robbin, Benjamin, New York (1967); see also O.E.Lanford in Nonlinear problems in the Physical Sciences and Biology,Springer Lecture Notes 322 (1973).

    Google Scholar 

  8. J. E. Marsden and M. Mc Cracken, The Hopf Bifurcation and its Applications, Springer-Verlag, New York (1976).

    Book  Google Scholar 

  9. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations, Noordhoff, Leyden, Netherland (1974).

    Google Scholar 

  10. V. I. Gertsberg and G. I. Sivashinsky, Large cells in nonlinear RayleighBénard convection, Prog. Theor. Phys. 66, 219 (1981).

    Article  MathSciNet  Google Scholar 

  11. A. Joets and R. Ribotta, Hydrodynamic transitions to chaos in the convection of an anisotropie fluid, J. Phys. 47, 595 (1986).

    Article  Google Scholar 

  12. S. Kai, N. Chizumi and M.Kohno, Spatial and temporal behavior of pattern formation and defect motions in the electrohydrodynamic instability of nematic liquid crystals, Phys. Rev. A40, 6554 (1990).

    ADS  Google Scholar 

  13. I. Rehberg, B. L. Winkler, M. de la Torre Juarez, S. Rasenat, W. Schopf in Festkorperproblemel/Advances in Solid State Physics, 29, 35 (1989).

    Article  Google Scholar 

  14. E. Bodenschatz, W. Zimmermann and L. Kramer, On electrically driven pattern-formating instabilities in planar nematics, J. Phys. 49, 1875 (1988).

    Article  Google Scholar 

  15. W. Pesch and L. Kramer, Nonlinear analysis of spatial structures in two-dimensional anisotropic pattern-forming systems, Z. Phys. B63, 121 (1986).

    Article  ADS  Google Scholar 

  16. J. Lauzeral and D. Walgraef, Pattern Formation in the Anisotropic ProctorSivashinsky Model, submitted to Phys. Rev. E (1996).

    Google Scholar 

  17. M. C. Cross and A. C. Newell, Convection patterns in large aspect ratio systems, Physica D10, 299 (1984)

    MathSciNet  ADS  Google Scholar 

  18. S. SaSa, The dynamics near zig-zag instability, Prog. Theor. Phys. 84, 10091 (1990).

    Article  Google Scholar 

  19. R. W. Walden, P. Kolodner, A. Passner and C. M. Surko, Traveling waves and chaos in convection in binary fluid mixtures, Phys. Rev. Lett. 55 496 (1985).

    Article  ADS  Google Scholar 

  20. A. Joets and R. Ribotta, Localized time-dependent states in the convection of nematic liquid crystals, Phys. Rev. Lett. 60, 2164 (1989).

    Article  ADS  Google Scholar 

  21. R Coullet, L. Gil and F. Rocca, Optical vortices, Opt. Comm 73, 403 (1989).

    Article  ADS  Google Scholar 

  22. J. Martinez-Mardones, R. Tiemann, W. Zeller and C. Perez-Garcia, Int. J. Bifurcation and Chaos 4, 1347 (1994).

    Article  ADS  MATH  Google Scholar 

  23. A. C. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, California (1992).

    Google Scholar 

  24. M. San Miguel, Phase Instabilities in the Laser Vector Complex Ginzburg-Landau Equations, Phys. Rev. Lett. 76, 425 (1995).

    Article  ADS  Google Scholar 

  25. T. Amengual, E. Hernandez-Garcia, D. Walgraef and M. San Miguel, Wave Unlocking Transition in Resonantly Coupled Ginzburg-Landau Equations, Phys. Rev. Lett. 76, 1956 (1996)

    Article  ADS  Google Scholar 

  26. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York (1977).

    Google Scholar 

  27. R. Lefever, G. Nicolis and R Borckmans, J. Chem. Soc. Farad. Trans. 84, 1013 (1988).

    Article  Google Scholar 

  28. A. C. Newell in Lectures in Applied Mathematics,AMS, Providence RI, vol.15 (1974), p.157.

    MathSciNet  Google Scholar 

  29. M. C. Cross, Derivation of the amplitude equation at the Rayleigh-Beñard instability, Phys. Fluids 23, 1727 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. H. Haken, Advanced Synergetics, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  31. A. C. Newell and J. A. Whitehead, Finite bandwith, finite amplitude convection, J. Fluid Mech. 38, 279 (1969).

    Article  ADS  MATH  Google Scholar 

  32. L. A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38, 203 (1969).

    Article  ADS  MATH  Google Scholar 

  33. R. J. Field and M. Burger eds., Oscillations and Travelling Waves in Chemical Systems, Wiley, New York (1985).

    Google Scholar 

  34. S. C. Mueller, P. Coullet and D. Walgraef, From Oscillations to excitability, CHAOS 4, 439 (1994).

    Article  ADS  Google Scholar 

  35. P. Coullet, T. Frisch, J. M. Gilli and S. Rica, Excitability in liquid cristals, CHAOS 4, 485 (1994).

    Article  ADS  Google Scholar 

  36. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, (1984).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walgraef, D. (1997). Appendices. In: Spatio-Temporal Pattern Formation. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1850-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1850-0_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7311-0

  • Online ISBN: 978-1-4612-1850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics