• Daniel Walgraef
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)


The various phenomena discussed in the preceding chapters are among the large number of problems described by systems of nonlinear differential equations which depend on one or more control parameters (e.g., the temperature gradient across the boundaries of a Rayleigh-Bénard cell, the angular velocity of the cylinders of a Taylor-Couette apparatus, the concentration of some reactive species in chemically active media, etc.). When studying these problems, one often wishes to know what are the fixed points of the dynamics, their stability, and their dependence on the control parameters. Furthermore, since multistability easily occurs in these systems, it is important to know, for practical purposes, how and why a particular state may be selected. The basic concepts that are needed to answer these questions and that are at the origin of the methods used throughout this book will be summarized here.


Hopf Bifurcation Nematic Liquid Crystal Linear Stability Analysis Unstable Mode Amplitude Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [14.1]
    M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York (1974).MATHGoogle Scholar
  2. [14.2]
    R. Fitz-Hugh, Impulses and physiological states in theoretical models of nerve membranes, Biophys. J. 1, 445 (1961).CrossRefGoogle Scholar
  3. [14.3]
    H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, vol.I, Paris (1892).Google Scholar
  4. [14.4]
    A. A. Andronov and A. Witt, C. R. Acad. Sci. Paris,190, 256 (1930).Google Scholar
  5. [14.5]
    E. Hopf, Ber. Math. Phys., Sachsische Akademie der Wissenschaften Leipzig 94, 1 (1942).Google Scholar
  6. [14.6]
    D.S. Schmidt in The Hopf Bifurcation and its Applications, J. E. Marsden and M. Mc Cracken eds., Springer-Verlag, New York (1976), p.95.MATHGoogle Scholar
  7. [14.7]
    A. Kelley in Transversal Mappings and Flows, R. Abraham and J. Robbin, Benjamin, New York (1967); see also O.E.Lanford in Nonlinear problems in the Physical Sciences and Biology,Springer Lecture Notes 322 (1973).Google Scholar
  8. [14.8]
    J. E. Marsden and M. Mc Cracken, The Hopf Bifurcation and its Applications, Springer-Verlag, New York (1976).CrossRefGoogle Scholar
  9. [14.9]
    M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Nonlinear Equations, Noordhoff, Leyden, Netherland (1974).Google Scholar
  10. [14.10]
    V. I. Gertsberg and G. I. Sivashinsky, Large cells in nonlinear RayleighBénard convection, Prog. Theor. Phys. 66, 219 (1981).MathSciNetCrossRefGoogle Scholar
  11. [14.11]
    A. Joets and R. Ribotta, Hydrodynamic transitions to chaos in the convection of an anisotropie fluid, J. Phys. 47, 595 (1986).CrossRefGoogle Scholar
  12. [14.12]
    S. Kai, N. Chizumi and M.Kohno, Spatial and temporal behavior of pattern formation and defect motions in the electrohydrodynamic instability of nematic liquid crystals, Phys. Rev. A40, 6554 (1990).ADSGoogle Scholar
  13. [14.13]
    I. Rehberg, B. L. Winkler, M. de la Torre Juarez, S. Rasenat, W. Schopf in Festkorperproblemel/Advances in Solid State Physics, 29, 35 (1989).CrossRefGoogle Scholar
  14. [14.14]
    E. Bodenschatz, W. Zimmermann and L. Kramer, On electrically driven pattern-formating instabilities in planar nematics, J. Phys. 49, 1875 (1988).CrossRefGoogle Scholar
  15. [14.15]
    W. Pesch and L. Kramer, Nonlinear analysis of spatial structures in two-dimensional anisotropic pattern-forming systems, Z. Phys. B63, 121 (1986).ADSCrossRefGoogle Scholar
  16. [14.16]
    J. Lauzeral and D. Walgraef, Pattern Formation in the Anisotropic ProctorSivashinsky Model, submitted to Phys. Rev. E (1996).Google Scholar
  17. [14.17]
    M. C. Cross and A. C. Newell, Convection patterns in large aspect ratio systems, Physica D10, 299 (1984)MathSciNetADSGoogle Scholar
  18. [14.18]
    S. SaSa, The dynamics near zig-zag instability, Prog. Theor. Phys. 84, 10091 (1990).CrossRefGoogle Scholar
  19. [14.19]
    R. W. Walden, P. Kolodner, A. Passner and C. M. Surko, Traveling waves and chaos in convection in binary fluid mixtures, Phys. Rev. Lett. 55 496 (1985).ADSCrossRefGoogle Scholar
  20. [14.20]
    A. Joets and R. Ribotta, Localized time-dependent states in the convection of nematic liquid crystals, Phys. Rev. Lett. 60, 2164 (1989).ADSCrossRefGoogle Scholar
  21. [14.21]
    R Coullet, L. Gil and F. Rocca, Optical vortices, Opt. Comm 73, 403 (1989).ADSCrossRefGoogle Scholar
  22. [14.22]
    J. Martinez-Mardones, R. Tiemann, W. Zeller and C. Perez-Garcia, Int. J. Bifurcation and Chaos 4, 1347 (1994).ADSMATHCrossRefGoogle Scholar
  23. [14.23]
    A. C. Newell and J. V. Moloney, Nonlinear Optics, Addison-Wesley, Redwood City, California (1992).Google Scholar
  24. [14.24]
    M. San Miguel, Phase Instabilities in the Laser Vector Complex Ginzburg-Landau Equations, Phys. Rev. Lett. 76, 425 (1995).ADSCrossRefGoogle Scholar
  25. [14.25]
    T. Amengual, E. Hernandez-Garcia, D. Walgraef and M. San Miguel, Wave Unlocking Transition in Resonantly Coupled Ginzburg-Landau Equations, Phys. Rev. Lett. 76, 1956 (1996)ADSCrossRefGoogle Scholar
  26. [14.26]
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York (1977).Google Scholar
  27. [14.27]
    R. Lefever, G. Nicolis and R Borckmans, J. Chem. Soc. Farad. Trans. 84, 1013 (1988).CrossRefGoogle Scholar
  28. [14.28]
    A. C. Newell in Lectures in Applied Mathematics,AMS, Providence RI, vol.15 (1974), p.157.MathSciNetGoogle Scholar
  29. [14.29]
    M. C. Cross, Derivation of the amplitude equation at the Rayleigh-Beñard instability, Phys. Fluids 23, 1727 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  30. [14.30]
    H. Haken, Advanced Synergetics, Springer-Verlag, Berlin, 1987.Google Scholar
  31. [14.31]
    A. C. Newell and J. A. Whitehead, Finite bandwith, finite amplitude convection, J. Fluid Mech. 38, 279 (1969).ADSMATHCrossRefGoogle Scholar
  32. [14.32]
    L. A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38, 203 (1969).ADSMATHCrossRefGoogle Scholar
  33. [ 14.33 ]
    R. J. Field and M. Burger eds., Oscillations and Travelling Waves in Chemical Systems, Wiley, New York (1985).Google Scholar
  34. [14.34]
    S. C. Mueller, P. Coullet and D. Walgraef, From Oscillations to excitability, CHAOS 4, 439 (1994).ADSCrossRefGoogle Scholar
  35. [14.35]
    P. Coullet, T. Frisch, J. M. Gilli and S. Rica, Excitability in liquid cristals, CHAOS 4, 485 (1994).ADSCrossRefGoogle Scholar
  36. [14.36]
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, (1984).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Daniel Walgraef
    • 1
  1. 1.Center for Nonlinear Phenomena and Complex SystemsUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations