Skip to main content

Implications of the DCCT in the Management of Diabetic Neuropathy

  • Chapter
Clinical Management of Diabetic Neuropathy

Part of the book series: Contemporary Endocrinology ((COE,volume 7))

  • 160 Accesses

Abstract

Neuropathy is a common complication of diabetes mellitus; up to 50% of diabetic patients show clinical evidence of neuropathy after 25 yr of the disease (1). In the past, the etiology of diabetic neuropathy had been widely debated, although a correlation with hyperglycemia had been suggested (2). Whether tight blood glucose control could prevent the development of neuropathy and other complications of diabetes had not been convincingly proven. The recently completed prospective multicenter Diabetes Control and Complications Trial (DCCT) was designed to specifically evaluate whether intensive insulin treatment would delay the appearance of or slow the progression of diabetic retinopathy, nephropathy, and neuropathy (3). This chapter reviews the design and results of the DCCT and discusses the clinical implications of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pirat J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care 1978;1:168–188.

    Google Scholar 

  2. Committee on Health Care Issues, American Neurological Association. Does improved control of glycemia prevent or ameliorate diabetic neuropathy? Ann Neurol 1986;19:288–290.

    Article  Google Scholar 

  3. The DCCT Research Group. The Diabetes Control and Complications Trial (DCCT): design and methodologic considerations for the feasibility phase. Diabetes 1986;35:530–545.

    Article  Google Scholar 

  4. Raff MC, Sangalang V, Asbury AK. Ischemic mononeuropathy multiplex associated with diabetes mellitus. Arch Neurol 1968;18:487–499.

    Article  PubMed  CAS  Google Scholar 

  5. Yagihashi S, Matsunaga M. Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med 1979;129:357–366.

    Article  PubMed  CAS  Google Scholar 

  6. Greene DA, Pfeifer MA. Diabetic neuropathy. In: Olefsky JM, Sherwin RS, eds. Diabetes Mellitus Management and Complications, vol. 1. Churchill Livingston, New York, 1985, pp. 223–254.

    Google Scholar 

  7. Gelber DA, Pfeifer MA. Management of diabetic neuropathy. In: Marshall SM, Home PD, eds. The Diabetes Annual/8 Elsevier Science, Amsterdam, 1994, pp. 349–363.

    Google Scholar 

  8. Appenzeller O, Ogin G. Myelinated fibers in human paravertebral sympathetic chain: white rami communicantes in alcoholic and diabetic patients. J Neurol Neurosurg 1974;37:1155–1161.

    Article  CAS  Google Scholar 

  9. Faerman I, Glocer L, Celener D, Jadzinsky M, Fox D, Maler M, Alvarez E. Autonomie nervous system and diabetes: histological and histochemical study of the autonomie nerve fibers of the urinary bladder in diabetic patients. Diabetes 1973;22:225–237.

    PubMed  CAS  Google Scholar 

  10. Kristensson K, Nordborg C, Olsson Y, Sourander P. Changes in the vagus nerve in diabetes mellitus. Acta Pathol Microbiol Scand 1971;79:684–685.

    CAS  Google Scholar 

  11. Smith B. Neuropathology of the esophagus in diabetes mellitus. Diabetes 1974;37:1151–1154.

    CAS  Google Scholar 

  12. Greene DA, Sima AA, Albers JW, Pfeifer MA. Diabetic neuropathy. In: Rifken H, Porte D, eds. Diabetes Mellitus Elsevier, New York, 1990, pp. 710–755.

    Google Scholar 

  13. Low PA, Walsh JC, Huang CY, McLeod JG. The sympathetic nervous system in diabetic neuropathy —a clinical and pathological study. Brain 1975;98:341–356.

    Article  PubMed  CAS  Google Scholar 

  14. Dyck PJ, Sherman WR, Hallcher LM, Service FJ, O’Brien PC, Grina LA, Palumbo PJ, Swanson CJ. Human diabetic endoneurial sorbitol, fructose, and myo-inositol related to sural nerve morphometry. Ann Neurol 1980;8:590–596.

    Article  PubMed  CAS  Google Scholar 

  15. Kimura J, Yamada T, Stevland NP. Distal slowing of motor nerve conduction velocity in diabetic polyneuropathy. J Neurol Sci 1979;42:291–302.

    Article  PubMed  CAS  Google Scholar 

  16. Harati Y. Diabetic peripheral neuropathies. Ann Intern Med 1987;107:546–559.

    PubMed  CAS  Google Scholar 

  17. Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992;15:1835–1843.

    Article  PubMed  CAS  Google Scholar 

  18. Greene DA. A sodium-pump defect in diabetic peripheral nerve corrected by sorbinil administration: a relationship to myoinositol metabolism and nerve conduction slowing. Metabolism 1986;35:60–65.

    Article  PubMed  CAS  Google Scholar 

  19. Pfeifer MA, Schumer MP. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes 1995;44:1355–1361.

    Article  PubMed  CAS  Google Scholar 

  20. Stevens MJ, Dananberg J, Feldman EL, Lattimer SA, Sima A, Greene D. The linked roles of nitric acid, aldose reductase and (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin-diabetic rat. J Clin Invest 1994;94:853–859.

    Article  PubMed  CAS  Google Scholar 

  21. Gabbay KH. Role of sorbitol pathway in neuropathy. Adv Metab Disord 1973;2(Suppl. 2):417–424.

    PubMed  CAS  Google Scholar 

  22. Ward JD. The polyol pathway in the neuropathy of early diabetes. Adv Metab Disord 1973;2(Suppl. 2):425–429.

    CAS  Google Scholar 

  23. Clements RS, Reynertson R. Myoinositol metabolism in diabetes mellitus: effect of insulin treatment. Diabetes 1977;26:215–221.

    Article  PubMed  CAS  Google Scholar 

  24. Greene DA, DeJesus PV, Winegrad AL. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 1975;55:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  25. Tchobroysky G. Relation of diabetic control to development of microvascular complications. Diabetologia 1978;15:143–152.

    Article  Google Scholar 

  26. Maser RD, Steenkiste AR, Dorman JS, Nielsen VK, Bass EB, Qurasha M, Drash AL, Becker DJ, Kuller LH, Greene DA, Orchard TJ. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complication Study. Diabetes 1989;8:1456–1461.

    Article  Google Scholar 

  27. Gregerson G. Diabetic neuropathy: influence of age, sex, metabolic control, and duration of diabetes on motor conduction velocity. Neurology 1967;17:972–980.

    Article  Google Scholar 

  28. Skillman TG, Johnson EW, Hamwi GJ, Driskill HJ. Motor nerve conduction velocity in diabetes mellitus. Diabetes 1961;10:46–51.

    Google Scholar 

  29. Graf RJ, Halter JB, Halar E, Porte D. Nerve conduction abnormalities in untreated maturity-onset diabetes: Relation to levels of fasting plasma glucose and glycosylated hemoglobin. Ann Intern Med 1979;90:298–303.

    PubMed  CAS  Google Scholar 

  30. Ward JD, Barnes CG, Fisher FJ, Jessup JD, Baker RW. Improvement in nerve conduction following treatment in newly diagnosed diabetes. Lancet 1971;1:428–430.

    Article  PubMed  CAS  Google Scholar 

  31. Fraser DM, Campbell IW, Ewing DJ, Murray A, Neilson JM, Clerke BF. Peripheral and autonomic nerve function in newly diagnosed diabetes mellitus. Diabetes 1977;26:546–550.

    Article  PubMed  CAS  Google Scholar 

  32. Terkildesen AB, Christensen NJ. Reversible nervous abnormalities in juvenile diabetes with recently diagnosed diabetes. Diabetologia 1971;7:113–117.

    Article  Google Scholar 

  33. Graf RJ, Halter JB, Pfeifer MA, Halar E, Brozovich F, Porte D. Glycemic control and nerve conduction abnormalities in non-insulin-dependent diabetic subjects. Ann Intern Med 1981;94:307–311.

    PubMed  CAS  Google Scholar 

  34. Dahl-Jorgensen K, Brinchmann-Hansen O, Hanssen KF, Ganes T, Kierulf P, Smeland E, Sandvik L, Aaenaes O. Effect of mean normoglycemia for two years on progression of early diabetic retinopathy, nephropathy, and neuropathy: the Oslo study. Br Med J 1986;293:1195–1199.

    Article  CAS  Google Scholar 

  35. Pietri A, Ehle AL, Raskin P. Changes in nerve conduction velocity after six weeks of glucoregulation with portable insulin infusion pumps. Diabetes 1980;29:668–671.

    Article  PubMed  CAS  Google Scholar 

  36. Service FJ, Rizza RA, Daube JR, O’Brien PC, Dyck PJ. Near normoglycemia improved nerve conduction and vibration sensation in diabetic neuropathy. Diabetologia 1985;28:722–727.

    PubMed  CAS  Google Scholar 

  37. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Article  Google Scholar 

  38. The DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. Diabetes Care 1987;10:1–19.

    Article  Google Scholar 

  39. The Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol 1995;75:894–903.

    Article  Google Scholar 

  40. The DCCT Research Group. The Diabetes Control and Complications Trial (DCCT): design and methodologie considerations for the feasibility phase. Diabetes 1986;35:530–545.

    Article  Google Scholar 

  41. The DCCT Research Group. Factors in development of diabetic neuropathy: baseline analysis of neuropathy in feasibility phase of Diabetes Control and Complications Trial (DCCT). Diabetes 1988;37:476–481.

    Article  Google Scholar 

  42. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from steroscopic color fundus photographs-an extension of the modified Airlie house classification: ETDRS report no. 10. Ophthalmology 1991;98:786–806.

    Google Scholar 

  43. Diabetes Control and Complications Research Group. Implementation of treatment protocols in the Diabetes Control and Complications Trial. Diabetes Care 1995;18:361–376.

    Article  Google Scholar 

  44. The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995;122:561–568.

    Google Scholar 

  45. Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol 1995;38:869–880.

    Article  Google Scholar 

  46. Pfeifer M, Cleary P, Kenny D, Schumer M, The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on measures of autonomie nervous system (ANS) function in the Diabetes Control and Complications Trial (DCCT) (abstract). Diabetes 1995;44:30A.

    Article  Google Scholar 

  47. The Diabetes Control and Complications Trial Research Group. The absence of a glycemie threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996;45:1289–1298.

    Article  Google Scholar 

  48. The Diabetes Control and Complications Trial Research Group. Resource utilization and costs of care in the Diabetes Control and Complications Trial. Diabetes Care 1995;18:1468–1478.

    Article  Google Scholar 

  49. The Diabetes Control and Complications Trial Research Group. Lifetime benefits and costs of intensive therapy as practiced in the Diabetes Control and Complications Trial. JAMA 1996;276: 1409–1415.

    Article  Google Scholar 

  50. Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet 1993;341:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  51. Reichard P, Nillson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 1995;329:304–309.

    Article  Google Scholar 

  52. Rubin RR, Peyrot M. Implications of the DCCT: looking beyond tight control. Diabetes Care 1994;17:235,236.

    PubMed  CAS  Google Scholar 

  53. Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr 1994;125:177–188.

    Article  Google Scholar 

  54. Abraira C, Colwell JA, Nuttall FQ, Sawain CT, Nagel NJ, Comstock JP, Emanuele NV, Levin SR, Henderson W, Lee HS,. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM Group): results of the feasibility study. Diabetes Care 1995; 18:1113–1123.

    Article  PubMed  CAS  Google Scholar 

  55. University Group Diabetes Program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes II: mortality results. Diabetes 1970;19(Suppl 2):785–830.

    Google Scholar 

  56. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shiohiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–117.

    Article  PubMed  CAS  Google Scholar 

  57. Prospective Diabetes Study Group. U.K. Prospective Diabetes Study. VIII. Study design, progress and performance. Diabetologia 1991;34:877–890.

    Article  Google Scholar 

  58. Colwell JA. Intensive insulin therapy in type II diabetes. Rationale and collaborative clinical trial results. Diabetes 1996;45:887–890.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gelber, D.A., Pfeifer, M. (1998). Implications of the DCCT in the Management of Diabetic Neuropathy. In: Veves, A. (eds) Clinical Management of Diabetic Neuropathy. Contemporary Endocrinology, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1816-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1816-6_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7296-0

  • Online ISBN: 978-1-4612-1816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics