Simultaneous Enzymatic Synthesis of Gluconic Acid and Sorbitol

Continuous Process Development Using Glucose-Fructose Oxidoreductase from Zymomonas mobilis
  • Marisol Silva-Martinez
  • Dietmar Haltrich
  • Senad Novalic
  • Klaus D. Kulbe
  • Bernd Nidetzky
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The production of sorbitol and gluconic acid by isolated glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis has been studied in a connective, 100-mL loop reactor with tangential ultrafiltration. Using a dilution rate of 0.04/h and 5 kU/L GFOR, substrate conversion (3 M sugar) in a single stage was >85%, and productivities of 126 g sorbitol/(L·d) were obtained. At a constant recycle rate (3/min) and a membrane area of 50 cm2, the dilution rates (and thus productivities) were however limited by a more than 30-fold reduction of the permeate flow in the presence of high sugar and protein concentrations (5 g/L). Protein was added, together with 10 mM dithiothreitol, to improve the stability of GFOR during substrate turnover and crossflow filtration, thus leading to a stable operation of the enzyme reactor for at least 5 d.

Index Entries

Glucose-fructose oxireductase sorbitol gluconic acid zymomonas mobilis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kingston, R. L., Scopes, R. K., and Baker, E. N. (1996), Structure 4, 1413–1428.CrossRefGoogle Scholar
  2. 2.
    Zachariou, M., and Scopes, R. K. (1986), J. Bacteriol. 167, 863–869.Google Scholar
  3. 3.
    Hardman, M. J. and Scopes, R. K. (1988), Eur. J. Biochem. 173, 203–209.CrossRefGoogle Scholar
  4. 4.
    Hardman, M. J., Tsao, M., and Scopes, R. K. (1992), Eur. J. Biochem. 205, 715–720.CrossRefGoogle Scholar
  5. 5.
    Rehr, B., Wilhelm, C., and Sahm, H. (1991), Appl. Microbiol. Biotechnol. 35, 144–148.CrossRefGoogle Scholar
  6. 6.
    Ichikawa, Y., Kitamoto, Y., Kato, N., and Mori, N. (1988), EP 0 322 723 A2.Google Scholar
  7. 7.
    Paterson, S. L., Fane, A. G., Fell, C. J. D., Chun, U. H., and Rogers, P. L. (1988), Biocatalysis 1, 217–229.CrossRefGoogle Scholar
  8. 8.
    Roh, H.-S. and Kim, H.-S. (1992), Enzyme Microb. Technol. 13, 920–924.Google Scholar
  9. 9.
    Kim, D.-M. and Kim, H.-S. (1992), Biotechnol. Bioeng. 39, 336–342.CrossRefGoogle Scholar
  10. 10.
    Chun, U. H., and Rogers, P. L. (1988), Appl. Microbiol. Biotechnol. 29, 19–24.CrossRefGoogle Scholar
  11. 11.
    Scopes, R. K., Rogers, P. L., and Leigh, D. A (1988), US Patent 4755467.Google Scholar
  12. 12.
    Gollhofer, D., Nidetzky, B., Fürlinger, M., and Kulbe, K. D. (1995), Enzyme Microb. Technol. 17, 235–240.CrossRefGoogle Scholar
  13. 13.
    Nidetzky, B., Fürlinger, M., Gollhofer, D., Scopes, R., Haltrich, D., and Kulbe, K. D. (1997), Biotechnol. Bioeng. 53, 624–629.CrossRefGoogle Scholar
  14. 14.
    Nidetzky, B., Fürlinger, M., Gollhofer, D., Haug, I., Haltrich, D., and Kulbe, K. D. (1997), Appl. Biochem. Biotechnol., 63-65, 173–188.CrossRefGoogle Scholar
  15. 15.
    Fürlinger, M., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Eur. J. Biochem., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marisol Silva-Martinez
    • 1
  • Dietmar Haltrich
    • 1
  • Senad Novalic
    • 1
  • Klaus D. Kulbe
    • 1
  • Bernd Nidetzky
    • 1
  1. 1.Division of Biochemical Engineering, Institute of Food TechnologyUniversität für Bodenkultur Wien (BOKU)ViennaAustria

Personalised recommendations