Ethanol Production from AFEX-Treated Forages and Agricultural Residues

  • Khaled Belkacemi
  • Ginette Turcotte
  • Damien de Halleux
  • Philippe Savoie
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Lignocellulosic materials derived from forages, namely timothy grass, alfalfa, reed canary grass, and agricultural residues, such as corn stalks and barley straw, were pretreated using ammonia fiber explosion (AFEX) process. The pretreated materials were directly saccharified by cellulolytic enzymes. Sixty to 80% of theoretical yield of sugars were obtained from the pretreated biomasses. Subsequent ethanolic fermentation of the hydrolysates by Pachysolen tannophilus ATCC 32691 resulted in 40-60% of theoretical yield after 24 h, based on the sugars present in the hydrolysates. The uptake of sugars was not complete, indicating a possible inhibitory effect on P. tannophilus during the fermentation of these substrates.

Index Entries

Forages agricultural residues AFEX enzymatic hydrolysis ethanolic fermentation biofuel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvo, P., Savoie, P., Tremblay, D., Emond, J. P., and Turcotte, G. (1996), Bioresource Technol. 56, 61–68.CrossRefGoogle Scholar
  2. 2.
    Stone, J. E., Scallan, A. M., Danefer, E., and Ahlgren, E. (1969), Adv. Chem. Serv. 95, 219–223.CrossRefGoogle Scholar
  3. 3.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982), Adv. Biochem. Eng. Biotechnol. 23, 157–187.Google Scholar
  4. 4.
    Fan, L. T., Lee, Y. R., and Beardmore, D. H. (1980), Biotechnol. Bioeng. 22, 177–199.CrossRefGoogle Scholar
  5. 5.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991), Appl. Biochem. Biotechnol. 30, 43–59.CrossRefGoogle Scholar
  6. 6.
    Himmel, M., Tucker, M., Baker, J., Rivard C, Oh, K., and Grohmann, K. (1985), Biotechnol. Bioeng. Symp. 15, 39–58.Google Scholar
  7. 7.
    Millett, M. A., Baker, A. J., and Satter, L. D. (1976), Biotechnol. Bioeng. Symp. 6, 125–153.Google Scholar
  8. 8.
    Brownell, H. H. and Saddler, J. N. (1984), Biotechnol. Bioeng. Symp. 14, 55–68.Google Scholar
  9. 9.
    Chua, M. G. S., and Wayman, M. (1979), Can. J. Chem. 57, 1141–1146.CrossRefGoogle Scholar
  10. 10.
    Shultz, T. P., Biermann, C. J., and Mc Ginnis, G. D. (1983), Ind. Eng. Chem. Prod. Res. Dev. 22, 344–348.CrossRefGoogle Scholar
  11. 11.
    Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985), J. Wood Chem. Tech. 5/3, 405–425.CrossRefGoogle Scholar
  12. 12.
    Belkacemi, K., Turcotte, G., Savoie, P., and Chornet, E. (1997), Ind. Eng. Chem. Res. 36, 4572–4580.CrossRefGoogle Scholar
  13. 13.
    Iyer, P. V., Wu, Z. W., Kim, S. B., and Yoon, Y. L. (1996), Appl. Biochem. Biotechnol. 57/58, 121–132.CrossRefGoogle Scholar
  14. 14.
    Yoon, H. H., Wu, Z. W., and Lee, Y., Y. (1994), Appl. Biochem. Biotechnol. 51/52, 5–19.CrossRefGoogle Scholar
  15. 15.
    Kim, S. B. and Lee, Y. Y. (1996), Appl Biochem. Biotechnol. 57/58, 147–156.CrossRefGoogle Scholar
  16. 16.
    Dale, B. E. and Moreira, M. J. (1982), Biotechnol. Bioeng. Symp. 12, 31–43.Google Scholar
  17. 17.
    Bothast, R. J., Dien, B. S., Iten, L. B., Hespell, R. B., and Lawton, J. W. (1996), in Liquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Liquid Fuel Conference, Nashville, TN, ASAE St-Joseph, pp. 241–252.Google Scholar
  18. 18.
    Dale, B. E. and de 1a Rosa, L. (1992), in Liquid Fuels from Renewable Resources, Proceedings of an Alternative Energy Conference, Nashville, TN, ASAE St-Joseph, pp. 162–170.Google Scholar
  19. 19.
    Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., and Latimer, V. M. (1994), in Liquid Fuels, Lubricants and Additives from Biomass, Proceedings of an Alternative Energy Conference, Nashville, TN, ASAE St-Joseph, pp. 104–111.Google Scholar
  20. 20.
    De 1a Rosa, L., Reshamwala, S., Latimer, V. M., Shawky, B. T., Dale, B. E., and Stuwart, E. D. (1994), Appl. Biochem. Biotechnol. 45/46, 483–497.CrossRefGoogle Scholar
  21. 21.
    Holzapple, M. T., Jun, J. H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991), Appl. Biochem. Biotechnol. 28/29, 59–74.CrossRefGoogle Scholar
  22. 22.
    Holzapple, M. T., Ripley, E. P., and Nikolaou, M. (1994), Biotechnol Bioeng. 44, 1122–1131.CrossRefGoogle Scholar
  23. 23.
    Moniruzzaman, M., Dien, B. S., Ferrer, B., Hespell, R. B., Dale, B. E., Ingram, L. O., and Bothast, R. J. (1996), Biotechnol. Lett. 18, 985–990.CrossRefGoogle Scholar
  24. 24.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  25. 25.
    Belkacemi, K., Turcotte, G., de Halleux, D., and Savoie, P. (1996), in Liquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Liquid Fuel Conference, Nashville, TN, ASAE St-Joseph, pp 232–240.Google Scholar
  26. 26.
    Chiquette, J. (1997), in Proceedings of the 1997 Ethanol Research and Development Workshop, Ottawa, ON, pp 111–114.Google Scholar
  27. 27.
    Beck, M. J. (1986), Biotechnol Bioeng. Symp. 17, 615–627.Google Scholar
  28. 28.
    Coughlan, M. P. (1985), Biotechnol Gen. Eng. Rev. 3, 39–109.CrossRefGoogle Scholar
  29. 29.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microbiol. Technol. 15, 19–25.CrossRefGoogle Scholar
  30. 30.
    Saddler, J. N. (1986), Microbiol. Sci. 3, 84–87.Google Scholar
  31. 31.
    Wood, T. M. (1989), in Enzymes Systems for Lignocellulose Degradation, Coughlan, M. P., ed., Elsevier, London, pp. 17–35.Google Scholar
  32. 32.
    Christov, L., and Prior, B. (1993), Enzyme Microbiol. Technol. 15, 460–475.CrossRefGoogle Scholar
  33. 33.
    Penner, M. H. and Liaw, E. T. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., ACS Symposium Series 566, pp. 363–371.Google Scholar
  34. 34.
    Panchal, C. J., Bast, L., Russell, I., and Stewart, G. G. (1988), Can. J. Microbiol. 34, 1316–1320.CrossRefGoogle Scholar
  35. 35.
    Dubus, D., Methner, H., Shulze, D., and Dellweg, H. (1983), Eur. J Appl. Microbiol. Biotechnol. 17, 287–291.CrossRefGoogle Scholar
  36. 36.
    Jeffries, T. W. (1990), in Yeast Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds. Marcel Dekker, Louvain, Belgium, pp. 349–393.Google Scholar
  37. 37.
    Dien, B. S., Kurtzman, C. P., Sana, B. C, and Bothast, R. J. (1996), Appl. Biochem. Biotechnol. 57/58, 233–242.CrossRefGoogle Scholar
  38. 38.
    Ligthelm, M. E., Prior, B. A., and du Preez, J. C. (1988), Appl. Microbiol. Biotechnol. 28, 293–296.Google Scholar
  39. 39.
    Wilkie, K. C. B. (1979), in Advances Carbohydrate Chemistry and Biochemistry, Vol. 36 Tipson, R. S., and Horton, D., eds., Academic, New York pp. 215–264.Google Scholar
  40. 40.
    Alvo, P. and Belkacemi, K. (1997), Bioresource Technol. in press.Google Scholar
  41. 41.
    Fan, L. T., Gharpuray, M. M., and Lee, Y. H. (1987), in Cellulose Hydrolysis, Springer-Verlag, New York, pp. 5–120.Google Scholar
  42. 42.
    Poutanen, K. and Puls, J. (1989), in Biogenesis and Biodegradation of Plant Cell Wall Polymers, Lewis, G. and Paice, M., eds., American Chemical Society, Washington D. C, pp. 456–467.Google Scholar
  43. 43.
    Doran, J. B. and Ingram, L. O. (1993), Biotechnol. Prog. 9, 533–538.CrossRefGoogle Scholar
  44. 44.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991), Appl. Environ. Microbiol 57, 893–900.Google Scholar
  45. 45.
    Takahashi, D. F., Carvalhal, M. L., and Alterthum, F. (1994), Biotechnol Lett. 16, 747–750.CrossRefGoogle Scholar
  46. 46.
    York, S. W. and Ingram, L. O. (1996), Biotechnol. Lett. 18, 683–688.CrossRefGoogle Scholar
  47. 47.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  48. 48.
    Schneider, H., Wang, P. Y., Chan, Y. K., and Maleska, R. (1981), Biotechnol. Lett. 3, 89–92.CrossRefGoogle Scholar
  49. 49.
    Slininger, P. J., Bothast, R. J., Van Cauwenberge, J. E., and Kurtzman, C. P. (1982), Biotechnol. Bioeng. 24, 371–384.CrossRefGoogle Scholar
  50. 50.
    Slininger, P. J., Bolen, P. L., and Kurtzman, C. P. (1987), Enzyme Microbiol. Technol. 9, 5–15.CrossRefGoogle Scholar
  51. 51.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1986), Biotechnol. Lett. 8, 897–900.CrossRefGoogle Scholar
  52. 52.
    Woods, M. A. and Millis, N. F. (1985), Biotechnol Lett. 7, 679–682.CrossRefGoogle Scholar
  53. 53.
    Du Preez, J. C. and Prior, B. A. (1985), Biotechnol. Lett. 7, 241–246.CrossRefGoogle Scholar
  54. 54.
    Olsson, L., and Hahn-Hägerdal, B. (1996), Enzyme Microbiol. Technol. 18, 312–331.CrossRefGoogle Scholar
  55. 55.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Khaled Belkacemi
    • 1
  • Ginette Turcotte
    • 1
  • Damien de Halleux
    • 2
  • Philippe Savoie
    • 2
    • 3
  1. 1.Department of Food Science and NutritionEngineering University LavalQuébecCanada
  2. 2.Department of Soil and Agri-FoodEngineering University LavalQuébecCanada
  3. 3.Agriculture and Agri-Food CanadaSte-Foy, QuébecCanada

Personalised recommendations