Advertisement

Cloning and Sequence Analysis of the Poly(3-Hydroxyalkanoic Acia)-Synthesis Genes of Pseudomonas acidophila

  • Fusako Umeda
  • Yoshiharu Kitano
  • Yuki Murakami
  • Kiyohito Yagi
  • Yoshiharu Miura
  • Tadashi Mlzoguchi
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Pseudomonas acidophila can grow with CO2 as a sole carbon source by the possession of a recombinant plasmid that clones genes that confer chemolithoautotrophic growth ability derived from the H2-oxidizing bacterium Alcaligenes hydrogenophilus. H2-oxidizing bacteria produce poly(3-hydroxybutyric acid) (PHB) from CO2/ but recombinant P. acidophila can produce the more useful biopolymer poly(3-hydroxyalkanoic acid) (PHA). In this study, the pha genes of P. acidophila were cloned and a sequence analysis was carried out. A gene library was constructed using the cosmid vector pVK102. A recombinant cosmid carrying the pha genes was selected by the complementation of a PHB-negative mutant of Alcaligenes eutrophus H16. The resulting recombinant cosmid pIK7 contained a 14.8-kb DNA insert. Subcloning was done, and the recombinant plasmid pEH74 was selected by hybridization with the A. eutrophus H16 pha genes. Escherichia coli possessing pEH74 produced PHB, indicating that pEH74 contained the pha genes of P. acidophila. The nucleotide sequences of the PHA-synthesis genes pha A (β-ketothiolase), phaB (acetoacetyl-CoA re-ductase), and phaC (PHA synthase) in pEH74 were determined. The homologies of phaA, phaB, and phaC between P. acidophila and A. eutrophus H16 were 64.7, 76.1, and 56.6%, respectively.

Index Entries

polyhydroxyalkanoate polyhydroxybutyrate nucleotide sequence Pseudomonas acidophila 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A. J. and Dawes, E. A. (1990), Microbiol. Rev. 54, 450–472.Google Scholar
  2. 2.
    Steinbüchel, A. (1991), Biomaterials, Byrom, D., ed., MacMillan, Basingstoke, UK, pp. 123–213.Google Scholar
  3. 3.
    Holmes, P. A. (1985), Phys. Technol. 16, 32–36.CrossRefGoogle Scholar
  4. 4.
    Repaske, R., and Mayer, R. (1976), Appl. Environ. Microbiol. 32, 592–597.Google Scholar
  5. 5.
    Umeda, F., Tanaka, N., Kimura, N., Nishie, H., Yagi, K., and Miura, Y. (1991), J. Ferment. Bioeng. 71, 379–383.CrossRefGoogle Scholar
  6. 6.
    Miura, Y., and Umeda, F. (1994), Yakugaku Zasshi 114, 63–72.Google Scholar
  7. 7.
    Yagi, K., Miyawaki, I., Kayashita, A., Kondo, M., Kitano, Y., Murakami, Y., Maeda, I., Umeda, F., Miura, Y., Kawase, M., and Mizoguchi, T. (1996), Appl. Environ. Microbiol. 62, 1004–1007.Google Scholar
  8. 8.
    Ishizaki, A., and Tanaka, K. (1991), J. Ferment. Bioeng. 71, 254–257.CrossRefGoogle Scholar
  9. 9.
    Doi, Y., Tamaki, A., Kunioka, M., and Doga, K. (1988), Appl. Microbiol. Biotechnol. 28, 330–334.CrossRefGoogle Scholar
  10. 10.
    Ohi, K., Takada, N., Komemushi, S., Okazaki, M., and Miura, Y. (1979), J. Gen. Appl. Microbiol. 25, 53–58.CrossRefGoogle Scholar
  11. 11.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982), Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  12. 12.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977), Proc. Natl. Acad. Sci. USA 74, 5463–5467.CrossRefGoogle Scholar
  13. 13.
    Chen, E. J. and Seeburg, P. H. (1985), DNA 4, 165–170.CrossRefGoogle Scholar
  14. 14.
    Peoples, O. P. and Sinskey, A. J. (1989), J. Biol. Chem. 264, 15,298-15,303.Google Scholar
  15. 15.
    Valentin, H., and Steinbüchel, A. (1993), Appl. Microbiol. Biotechnol. 39, 309–317.CrossRefGoogle Scholar
  16. 16.
    Pieper U., and Steinbüchel, A. (1992), FEMS Microbiol. Lett. 96, 73–80.CrossRefGoogle Scholar
  17. 17.
    Huisman, G. W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., and Witholt, B. (1991), J. Biol Chem. 266, 2191–2198.Google Scholar
  18. 18.
    Timm, A., and Steinbüchel, A. (1992), Eur. J. Biochem. 209, 15–30.CrossRefGoogle Scholar
  19. 19.
    Liebergesell M., and Steinbüchel, A. (1992), J. Biochem. 209, 135–150.Google Scholar
  20. 20.
    Liebergesell M., and Steinbüchel, A. (1993), Appl. Microbiol. Biotechnol. 38, 493–501.CrossRefGoogle Scholar
  21. 21.
    Peoples, O. P. and Sinskey, A. J. (1989), J. Biol. Chem. 264, 15,293-15,297.Google Scholar
  22. 22.
    Peoples O. P. and Sinskey, A. J. (1989), Mol. Microbiol 3, 349–357.CrossRefGoogle Scholar
  23. 23.
    Griebel, R., and Merrick, J. M. (1971), J. Bacteriol 108, 782–789.Google Scholar
  24. 24.
    Persson, B., B.-Olivecrona, G., Enerback, S., Olivecrona, T., and Jornvall. H. (1989), Eur. J. Biochem. 179, 39–45.CrossRefGoogle Scholar
  25. 25.
    Ploux, O., Masamune, S., and Walsh, C. T. (1988), Eur. J. Biochem. 174, 177–182.CrossRefGoogle Scholar
  26. 26.
    Steinbüchel, A., Aerts, K., Babel, W., Föllner, C., Liebergesell, M., Madkour, M. H., Mayer, F., Pieper-Furst, U., Pries, A., Valentin, H. E., and Wieczorek, R. (1995), Can. J. Microbiol. 41, 94–105.CrossRefGoogle Scholar
  27. 27.
    Schubert, P., Krüger, N., and Steinbüchel, A. (1991), J. Bacteriol. 173, 168–175.Google Scholar
  28. 28.
    Hawley, D. K. and McClure, W. R. (1988), Nucleic Acids Res. 11, 2237–2255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Fusako Umeda
    • 1
  • Yoshiharu Kitano
    • 1
  • Yuki Murakami
    • 1
  • Kiyohito Yagi
    • 1
  • Yoshiharu Miura
    • 1
  • Tadashi Mlzoguchi
    • 1
  1. 1.Faculty of Pharmaceutical SciencesOsaka UniversitySuitaJapan

Personalised recommendations