Skip to main content

Use of Hemicellulose Hydrolysate for β-Glucosidase Fermentation

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

  • 517 Accesses

Abstract

Hydrolysis of cellulose by Trichoderma cellulases often results in a mixture of glucose, cellobiose, and low-mol-wt cellodextrins. Cellobiose is nonfermentable for most yeasts, and therefore it has to be hydrolyzed to glucose by β-glucosidase prior to ethanol fermentation. In the present study, the β-glucosidase production of one Pénicillium and three Aspergillus strains, which were previously selected out of 24 strains, was investigated on steam pretreated willow. Both steam-pretreated willow and hemicellulose hydrolysate, released during steam explosion of willow, were used as carbon sources. Reference cultivation runs were performed using prehydrolyzed Solka Floc and glucose. The four strains were compared with Trichoderma reesei regarding sugar consumption and β-glucosidase production. Aspergillus niger and Aspergillus phoenicis proved to be the best enzyme producers on hemicellulose hydrolysate. The maximum β-glucosidase activity, 4.60 IU/mL, was obtained when A. phoenicis was cultivated on the mixture of hemicellulose hydrolysate and steam-pretreated willow. The maximum yield of enzyme activity, 502 IU/g total carbohydrate, was obtained when Aspergillus foetidus was cultivated on the hemicellulose hydrolysate.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jurasek, L. (1979), Develop. Ind. Microbiol. 20, 177–183.

    Google Scholar 

  2. Saddler, J. N., Brownell, H. H., Clermont, L. P., and Levitin, N. (1982), Biotech. Bioeng. 24, 1389–1402.

    Article  CAS  Google Scholar 

  3. Grethlein, H. E., Allen, D. C, and Converse, A. O. (1984), Biotech. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  4. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, M., Stenberg, K., Szengyel, Zs., Tenborg, C., and Zacchi, G. (1996), Bioresource Technol. 58, 171–179.

    Article  CAS  Google Scholar 

  5. Saddler, J. N. (1993), in Bioconversion of Forest and Agricultural Plant Residues, CAB International, Wallingford, UK.

    Google Scholar 

  6. Wood, T. M. (1989), Enzyme Syst. Lignocellul. Degrad., Proc. Workshop Prod., Charact. Appl. Cellul.-, HemicelluL-, Lignin-Degrading Enzyme Syst., Coughlan, M. P., ed., Elsevier; London, UK, pp. 5–16.

    Google Scholar 

  7. Wood, T. M. and Garcia-Campayo, V. (1990), Biodegradation 1, 147–161.

    Article  CAS  Google Scholar 

  8. Mandels, M., and Reese, E. T. (1963), in Advances in Enzymatic Hydrolysis of Cellulose and Related Materials, Reese, E. T., ed., Pergamon, London, pp. 115–157.

    Google Scholar 

  9. Eklund, R., Galbe, M., and Zacchi, G. (1990), Enzyme Microb. Technol. 12, 225–228.

    Article  CAS  Google Scholar 

  10. Sternberg, D., Vijayakumar, P., and Reese, E. T. (1977), Can. J. Microbiol. 23, 139–147.

    Article  CAS  Google Scholar 

  11. Tangnu, S. K., Blanche, H. W., and Wilke, C. R. (1981), Biotech. Bioeng. 23, 1837–1849.

    Article  CAS  Google Scholar 

  12. Duff, S. J. B. (1985), Biotechol. Lett. 7, 185–190.

    Article  CAS  Google Scholar 

  13. Eklund, R., Galbe, M., and Zacchi, G. (1995), Bioresource Technol. 51, 225–229.

    Article  Google Scholar 

  14. Palmqvist, E., Hahn-Hägerdal, B., Galbe, and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 470–476.

    Article  CAS  Google Scholar 

  15. Olsson, L., and Hahn-Hägerdal, B. (1993), Process Biochem. 28, 249–257.

    Article  CAS  Google Scholar 

  16. Szengyel, Zs., Zacchi, G., and Réczey, K. (1997), Appl. Biochem. Biotechnol., 63-65, 351–362.

    Article  CAS  Google Scholar 

  17. Kerns, G., Dalchow, E., Klappach, G., and Meyer, D. (1986), Acta Biotechnol. 6, 355–359.

    Article  CAS  Google Scholar 

  18. Srivastava, S. K., Gopalkrishnan, K. S., and Ramachandran, K. B. (1987), J. Fermentation Technol., 65, 95–99.

    Article  CAS  Google Scholar 

  19. Eklund, R., Galbe, M., and Zacchi, G. (1988), International Symposium on Alcohol Fuels, VIII, 101–105.

    Google Scholar 

  20. Hägglund, E. (1951), in Chemistry of Wood, Academic, New York, NY., pp 324–332.

    Google Scholar 

  21. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  22. Mandels, M., and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  23. Berghem, L. E. R., and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  CAS  Google Scholar 

  24. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  25. Miller, G. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  26. Kerns, G., Okunev, O. N., Ananin, V. M., and Golovlev, E. L. (1987), Acta Biotechnol. 6, 535–545.

    Article  Google Scholar 

  27. Kubicek, C. P., Messner, R., Gruber, F., Mach, R. L., and Kubicek-Pranz, E. M. (1993), Enzyme Microb. Technol. 15, 90–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Réczey, K., Brumbauer, A., Bollók, M., Szengyel, Z., Zacchi, G. (1998). Use of Hemicellulose Hydrolysate for β-Glucosidase Fermentation. In: Finkelstein, M., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1814-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1814-2_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7295-3

  • Online ISBN: 978-1-4612-1814-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics