Production of Xylitol by Candida mogii from Rice Straw Hydrolysate

Study of Environmental Effects Using Statistical Design
  • Z. D. V. L. Mayerhoff
  • I. C. Roberto
  • S. S. Silva
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The influence of aeration level, initial pH, initial cell concentration, and fermentation time on the xylitol production from rice straw hemicellulose hydrolysate by Candida mogii was studied. A multifactorial experimental design was adopted to evaluate this influence. A statistical analysis of the results showed that the aeration level and the initial pH had significant effects on yield factor, volumetric productivity, and xylose consumption. For the latter, fermentation time was also a significant variable. Based on the response surface methodology, models for the range investigated were proposed. The maximum values for the yield factor (Yp/s) and volumetric productivity (Qp) were, respectively, 0.71 g/g and 0.46 g(Lh).

Index Entries

Rice straw Candida mogii hemicellulose hydrolysate factorial design xylitol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vandeska, E., Amartey, S., Kuzmanova, S., and Jeffries, T. W, (1995), World J. Microbiol. Biotechnol. 11, 213–218.CrossRefGoogle Scholar
  2. 2.
    Roseiro, J. C., Peito, M. A., Girio, F. M., and Amaral-Collaço, M. T. (1991), Arch. Microbiol, 156, 484–490.Google Scholar
  3. 3.
    Noulleau, V., Preziosi-Belloy, L., and Navarro, J. M. (1995), Biotechnol. Lett. 17, 417–422.CrossRefGoogle Scholar
  4. 4.
    Furlan, S. A., Bouilloud, P., and de Castro, H. F. (1994), Process Biochem. 29, 657–662.CrossRefGoogle Scholar
  5. 5.
    Roberto, I. C., Silva, S. S., Felipe, M. G. A., Mancilha, I. M., and Sato, S. (1996), Appl. Biochem. Biotechnol. 57/58, 339–347.CrossRefGoogle Scholar
  6. 6.
    Cao, N.-J., Tang, R., Gong, C.-S., and Chen, L. F. (1994), Appl. Biochem. Biotechnol. 45/ 46, 515–519.CrossRefGoogle Scholar
  7. 7.
    Roberto, I. C, Sato, S., and Mancilha, I. M. (1996), J. Ind. Microbiol. 16, 348–350.CrossRefGoogle Scholar
  8. 8.
    Mayerhoff, Z. D. V. L., Roberto, I. C, and Silva, S. S. (1997), Biotechnol. Lett. 19, 407–409.CrossRefGoogle Scholar
  9. 9.
    Parajó, J. C, Dominguez, H., and Dominguez, J. M. (1996), Bioresource Technol. 57, 179–185.CrossRefGoogle Scholar
  10. 10.
    Roberto, I. C, Sato, S., Mancilha, I. M., and Taqueda, M. E. S. (1995), Biotechnol. Lett. 17, 1223–1228.CrossRefGoogle Scholar
  11. 11.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistic for Experimenters: an Introduction to Design, Data Analysis and Model Building, John Wiley, New York.Google Scholar
  12. 12.
    Sirisansaneeyakul, S., Rizzi, M., and Reuβ, M. In DECHEMA Biotechnology Conferences 5. VCH Verlogsgemeinschaft, Weinheim (1992), pp. 541–544.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Z. D. V. L. Mayerhoff
    • 1
  • I. C. Roberto
    • 1
  • S. S. Silva
    • 1
  1. 1.Department of BiotechnologyFaculty of Chemical Engineering of LorenaLorenaBrazil

Personalised recommendations