Role for Transforming Growth Factor-β

Clues from Other Cancers
  • Leslie I. Gold
  • Trilok Parekh

Abstract

Transforming growth factor-βs (TGF-β) are a family of proteins that regulate cell growth (reviews in refs. 1, 2, 3, 4). These proteins are one of the only endogenous inhibitors of the growth of cells and since uncontrolled cell proliferation is the hallmark of cancer, our laboratory has been intrigued by and dedicated to understanding the role for TGF-βs in neoplastic development and cancer progression. Our first approach was to determine the level of TGF-β mRNA and protein expression in a variety of cancers, in vivo, and to correlate this information with disease stage and survival. Since TGF-βs are natural inhibitors of growth, we postulated that there may be a loss or downregulation of TGF-β in cancer cells, thereby permitting their growth. However, on the contrary, we and others have generally found a marked increase in the expression of TGF-β isoform mRNA and protein in cancers of epithelial (ectodermal/endodermal), neuroectodermal, and mesenchymal origin, including malignancies of the pancreas, colon, stomach, endometrium, breast, brain, prostate, and bone (11–21,84,147, 148, 149,169, 170,228,252, 253, 254, 255). Furthermore, in most of these cancers high expression correlated with more advanced stages of malignancy and decreased survival. Therefore, it was hypothesized that the increased expression of TGF-β represents a loss in the growth inhibitory response to TGF-β and that understanding the molecular events associated with the escape of tumor cells from TGF-β regulation will provide insights into mechanisms underlying oncogenic transformation. Indeed, tumor cells in culture (i.e., colon carcinoma and glioblastoma multiforme [GBM]) have demonstrated a progressive loss of the growth inhibitory response to TGF-β that varies directly with the malignant stage of the original tumor, and the most aggressive forms actually show autocrine and/or paracrine growth stimulation by TGF-β.

Keywords

Adenocarcinoma Pancreatitis Retina Oncol Progesterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massague J. The transforming growth factor-β family. Annu Rev Cell Biol 1990; 6:597–641.PubMedCrossRefGoogle Scholar
  2. 2.
    Moses HL, Pietenpol JA, Munger K, Murphy CS, Yang EY. TGF-β regulation of epithelial cell proliferation: role of tumor suppressor genes. Princess Takamatsu Symp 1991; 22:183–195.PubMedGoogle Scholar
  3. 3.
    Massague J, Cheifetz S, Laiho M, Ralph DA, Weis FMB, Zentella A. Transforming growth factor-β. In: Franks LM (ed). Cancer surveys. Tumor suppressor genes, the cell cycle and cancer vol XII, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1992; pp. 81–103.Google Scholar
  4. 4.
    Sporn MB, Roberts AB. TGF-β: problems and prospects. Cell Regulation 1990; 1:875–882.Google Scholar
  5. 5.
    Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Develp 1994; 8:133–146.CrossRefGoogle Scholar
  6. 6.
    Miyazono K, Ichijo H, Heldin TC-H. Transforming growth factor-β: latent forms, binding proteins and receptors. Growth Factors 1993; 8: 11–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Daopin S, Piez KA, Ogawa Y, Davies DR. Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science 1992; 257:369–373.PubMedCrossRefGoogle Scholar
  8. 8.
    Schlunegger MP, Gratter MG. An unusual feature revealed by the crystal structure of 2.2 Å resolution of human transforming growth factor-β. Nature 1992; 358:430–434.PubMedCrossRefGoogle Scholar
  9. 9.
    Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF-βl, TGF-β2, and TGF-β3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 1991; 115: 1091–1105.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelton RW, Johnson MD, Perkett EA, Gold LI, Moses HL. Expression of transforming growth factor-βl, β2, and β3 mRNA and protein in the murine lung. Am J Respir Cell Mol Biol 1991; 5:522–530.PubMedGoogle Scholar
  11. 11.
    Gold L, Saxena B, Mittal K, Marmor M, Goswami S, Nactigal L, Korc M, Demopoulos R. Increased expression of transforming growth factor-β isoforms and basic fibroblast growth factor in complex hyperplasia and adenocarcinoma of the endometrium: evidence for paracrine and autocrine action. Cancer Res 1994; 54:2347–2358.PubMedGoogle Scholar
  12. 12.
    Johnson MD, Jennings MT, Gold LI, Moses HL Transforming growth factor-β in neural embryogenesis and neoplasia. Human Pathol 1993; 24:457–462.CrossRefGoogle Scholar
  13. 13.
    Jennings MT, Kaariainen BA, Gold LI, Maciunas RJ, Commers BA TGF-βl and TGF-β2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors and eppendymomas: evidence in support of an autocrine hypothesis. Human Pathol 1994; 25:464–475.CrossRefGoogle Scholar
  14. 14.
    Gold L, Korc M. Expression of transforming growth factor-β1, 2 and 3 mRNA and protein in human cancers. Dig Surg 1994; 11:150–156.CrossRefGoogle Scholar
  15. 15.
    Gorsch SF, Memoli VA, Stukel TA, Gold LI, Arrick BA. Immunohistochemical staining for transforming growth factor-β 1 associates with disease progression in human breast cancer. Cancer Res 1992; 52:6949–6952.PubMedGoogle Scholar
  16. 16.
    Friess H, Yamanka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M. Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105: 1846–1856.PubMedGoogle Scholar
  17. 17.
    Hafez MM, Gold LI, Klimstra D, Zeng Z, Zauber A, Winawer S, Cohen A, Friedman E. High levels of TGF-βl by immunohistochemistry correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prevention 1995; 4:549–554.Google Scholar
  18. 18.
    Moss SF, Liu TC, Petrotos A, Shu T, Gold LI, Holt PR. Inward growth of colonic adenomatous polyps. Gastroenterology 1996; 111:1425–1432.PubMedCrossRefGoogle Scholar
  19. 19.
    Kloen P, Gebhardt MC, Perez-Atayde A, Rosenberg AS, Springfield DS, Gold LI, Mankin HJ. Expression of transforming growth factor-beta (TGF-β) isoforms in osteosarcomas: TGF-β3 is related to disease progression. Cancer 1997; 80:2230–2239.PubMedCrossRefGoogle Scholar
  20. 20.
    Naef M, Ishiwata T, Friess H, Buchler M, Gold LI, Korc M. Differential localization of transforming growth factor β isoforms in human gastric mucosa and over-expression in gastric carcinoma. Int J Cancer 1997; 71:131–137.PubMedCrossRefGoogle Scholar
  21. 21.
    Gold LI, Saxena B, Zagzag D, Miller DC, Koslow M, Brandeis L, Farmer JP. Increased expression of TGF-β isoforms by malignant gliomas. J Cell Biol 1992; 16B:122.Google Scholar
  22. 22.
    Levine JH, Moses HL, Gold LI, Nanney LB. Spatial and temporal patterns of immunoreactive TGF-βl, β2, and β3 during excisional wound repair. Am J Pathol 1993; 143:368-380.Google Scholar
  23. 23.
    Chegini N, Gold LI, Williams RS, Masterson BJ. Localization of transforming growth factor beta isoforms TGF-β 1, TGF-β2, TGF-β3 in surgically induced pelvic adhesions in the rat. Obstet Gynecol 1994; 83:449–454.PubMedGoogle Scholar
  24. 24.
    Botney MD, Bahadori LM, Gold LI. Vascular remodeling in primary hypertension: potential role for transforming growth factor-β. Am J Pathol 1994; 144:286–295.PubMedGoogle Scholar
  25. 25.
    Perkett EA, Pelton RW, Meyrick B, Gold LI, Miller DA. Expression of transforming growth factor-β mRNAs and proteins in pulmonary vascular remodeling in the sheep air embolization model of pulmonary hypertension. Am J Resp Cell Mol Biol 1994; 11:16–24.Google Scholar
  26. 26.
    McMullen H, Longaker MT, Cabrera RC, Sung JJ, Canete J, Siebert JW, Lorenz HP, Gold LI. Analysis of TGF-βl, TGF-β2, and TGF-β3 immunoreactivity during ovine wound repair. Wound Repair Regen 1995; 3:141–156.PubMedCrossRefGoogle Scholar
  27. 27.
    Bhadori L, Milder J, Gold LI, Botney MD. Macrophage associated TGF-β co-localizes with type 1 procollagen gene expression in atherosclerotic human pulmonary arteries. Am J Pathol 1995; 146:1140–1149.Google Scholar
  28. 28.
    Santana A, Saxena B, Nobel NA, Gold LI, Marshall BC. Increased expression of transforming growth factor β isoforms (βl,β2,β3) in bleomycin-induced pulmonary fibrosis. Am J Resp Cell Mol Biol. 1995; 13:34–44.Google Scholar
  29. 29.
    Shihab FS, Yamamoto T, Nast CC, Cohen AH, Nobel NA, Gold LI, Border WA. Transforming growth factor-β in acute and chronic rejection of the kidney correlates with fibrosis. J Am Soc Nephrol 1995; 6:286–294.PubMedGoogle Scholar
  30. 30.
    Yamamoto T, Nobel NA, Cohen AH, Hishida A, Gold LI, Border WA. Expression of transforming growth-β isoforms in human glomerular disease. Kidney Int 1996; 49:461–469.PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson MD, Gold LI. Distribution of transforming growth factor β in HIV-1 encephalitis. Human Pathol 1996; 27:643–649.CrossRefGoogle Scholar
  32. 32.
    Shankland S, Pippin J, Pichler RH, Gordon KL, Friedman S, Gold LI, Johnson RJ, Couser WG. Differential expression of transforming growth factor-β isoforms and receptors in experimental membraneous nephropathy. Kidney Int 1996; 50:116–124.PubMedCrossRefGoogle Scholar
  33. 33.
    Meddahi A, Caruelle JP, Gold LI, Rosso V, Barritault D. New concepts in tissue repair: skin as an example. Diabetes Metab 1996; 22:274–278.PubMedGoogle Scholar
  34. 34.
    Friess H, Zhao L, Riesle E, Waldemar U, Brundler A-M, Horvath L, Gold LI, Korc M, Buchler MW. Enhanced expression of TGF-βs and their receptors in human acute pancreatitis. Ann Surg 1997; in press.Google Scholar
  35. 35.
    Riesle E, Friess H, Deflorin J, Zhao L, Baczako K, Gold LI, Korc M, Buchler MW. Over-expression of TGF-βs following acute edematous pancreatitis in rats suggests a role in pancreatic regeneration, Gut, 1997; 40:73–79.PubMedGoogle Scholar
  36. 36.
    McGowan SE, Jackson SK, Olson PJ, Gold LI. Influence of exogenous and endogenous transforming growth factor-β on elastin gene expression in lung fibroblasts. Am J Resp Cell Mol Biol 1997; 17:25–35.Google Scholar
  37. 37.
    Roth DA, Gold LI, Han VK, McCarthy JG, Sung JJ, Wisoff JH, Longaker MT. Immunolocalization of transforming growth factor-β 1, β2, and β3 and insulin-like growth factor-1 in premature cranial suture fusion. Plastic Reconstruct Surg 1997; 99:300–309.CrossRefGoogle Scholar
  38. 38.
    Roth DA, Longaker MT, McCarthy JG, McMullen HF, Gold LI. Increased immunoreactivity for TGF-β isoforms (β1, β2, and β3) during rat cranial suture fusion suggests their role in cranial suture development. J Bone Mineral Res 1997; 12:311–321.CrossRefGoogle Scholar
  39. 39.
    Kim SJ, Jeang KT, Glick A, Sporn MB, Roberts AB. Promoter sequences of the human transforming growth factor-β 1 gene responsive to transforming growth factor-βl auto-induction. J Biol Chem 1989; 264:7041–7045.PubMedGoogle Scholar
  40. 40.
    Lafyatis R, Lechleider R, Kin SJ, Jakowlew S, Roberts AB, Sporn MB. Structural and functional characterization of the transforming growth factor-β3 promoter: a cAMP responsive element regulates basal and induced transcription. J Biol Chem 1990; 265:19,128–19,136.PubMedGoogle Scholar
  41. 41.
    Graycar JL, Miller DA, Arrick BA, Lyons RM, Moses HL, Derynck R. Human transforming growth factor-β3: recombinant expression, purification, and biological activities in comparison with transforming growth factor-β 1 and β2. Mol Endocrinol 1989; 3:1977-1986.Google Scholar
  42. 42.
    Merwin JR, Newman W, Dawson LD, Tucker A, Madri JA. Vascular cells respond differentially to transforming growth factors betal and beta2 in vitro. Am J Pathol 1991; 138:37–51.PubMedGoogle Scholar
  43. 43.
    Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, David IB. Mesoderm induction in amphibians: role of TGF-β2-like factors. Science 1988; 236:783–786.CrossRefGoogle Scholar
  44. 44.
    Wahl SM. Transforming growth factor beta (TGF-β) in inflammation: a cause and a cure. J Clin Immunol 1992; 12:61–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Parekh T, Saxena B, Reibman J, Cronstein B, Gold LI. Neutrophil chemotaxis in response to transforming growth factor-β isoforms (TGF-β1, TGF-β2, and TGF-β3) is mediated by fibronectin. J Immunol 1994; 152:2456–2466.PubMedGoogle Scholar
  46. 46.
    Koyama NT, Koshikawa N, Morisaki Y, Saito Y, Yoshida S. Bifunctional effects of transforming growth factor-β on migration of cultured rat aortic smooth muscle cells Biochem Biophys Res Commun 1990; 169:725.PubMedCrossRefGoogle Scholar
  47. 47.
    Postlewaite AE, Keski-Oja J, Moses HL, Kang AH. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-beta. J Exp Med 1987; 165:251-256.Google Scholar
  48. 48.
    Ignotz RA, Massague J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1987; 261:4337–4345.Google Scholar
  49. 49.
    Laiho M, Saksela O, Keski-Oja J. Transforming growth factor-β induction of type-1 plasminogen activator inhibitor. J Biol Chem 1987; 262:17, 467–17, 474.Google Scholar
  50. 50.
    Kubota S, Fridman R, Yamada Y. Transforming growth factor-β suppresses the invasiveness of human fibrosarcoma cells in vitro by increasing expression of tissue inhibitor of metalloproteinase. Bichem Biophys Res Commun 1991; 176:129–136.CrossRefGoogle Scholar
  51. 51.
    Border WA, Ruoslahti E. Transforming growth factor-β in disease: the dark side of tissue repair. J Clin Invest 1992; 90:1–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Border WA, Noble NA. Transforming growth factor-β in tissue fibrosis. N Engl J Med 1994; 331:1286–1292.PubMedCrossRefGoogle Scholar
  53. 53.
    Nikol S, Isner JM, Pickering JG, Kearney M, Leclerc G, Weir L. Expression of transforming growth factor-β 1 is increased in human vascular restenosis lesions. J Clin Invest. 1992; 90:1582–1592.PubMedCrossRefGoogle Scholar
  54. 54.
    Ignotz RA, Massague J. Cell adhesion receptors as targets for transforming growth factor-β action. Cell 1987; 51:189–197.PubMedCrossRefGoogle Scholar
  55. 55.
    Arrick BA, Lopez AR, Elfman F, Ebner R, Damsky CH, Derynck R. Altered metabolic and adhesive properties associated with increased expression of transforming growth factor-β 1. J Cell Biol 1992; 118:715–726.PubMedCrossRefGoogle Scholar
  56. 56.
    Assoian RK, Sporn MB. Type-beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 1986; 102:1712–1733.CrossRefGoogle Scholar
  57. 57.
    Seyedin SM, Thomas TC, Thompson AY, Rosen DM, Piez KA. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci USA 1985; 82:2267–2271.PubMedCrossRefGoogle Scholar
  58. 58.
    Flaumenhaft R, Kojima S, Abe M, Rifkin DB. Activation of latent transforming growth factor β. Adv Pharmacol 1993; 24:51–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Nunes I, Kojima S, Rifkin DB. Effects of endogenously activated transforming growth factor-β on growth and differentiation of retinoic acid-treated HL-60 cells. Cancer Res 1996; 56:495–499.PubMedGoogle Scholar
  60. 60.
    Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE. Thrombospondin binds and activates the small and large forms of latent transforming growth factor-β in a chemically defined system. J Biol Chem 1994; 269:26,775–26,782.PubMedGoogle Scholar
  61. 61.
    Flaumenhaft R, Abe M, Sato M, Miyazono K, Harpel J, Heldin C-H, Rifkin DB. Role of the latent TGF-β binding protein in the activation of latent TGF-β by co-cultures of endothelial and smooth muscle cells. J Cell Biol 1993; 120:995-1002.Google Scholar
  62. 62.
    Sato Y, Tsuboi R, Lyons R, Moses HL, Rifkin DB. Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self regulating system. J Cell Biol 1990; 111:757–763.PubMedCrossRefGoogle Scholar
  63. 63.
    Sato Y, Okada F, Abe M, Tadashi S, Kuwano M, Sato S, Furuya A, Hanai N, Tamaoki T. The mechanism for the activation of latent TGF-β during co-culture of endothelial cells and smooth muscle cells: cell-type specific targeting of latent TGF-β to smooth muscle cells. J Cell Biol 1993; 123:1249–1254.PubMedCrossRefGoogle Scholar
  64. 64.
    Jirtle RL, Carr BI, Scott CD. Modulation of the insulin-like growth factor II/mannose 6-phosphate receptors and transforming growth factor-beta 1 during liver regeneration. J Biol Chem 1991; 266:22,444–22,450.PubMedGoogle Scholar
  65. 65.
    Miyazono KP, Hellman C, Wernstedt C, Heldin C-H. Latent high molecular weight complex of transforming growth factor-β1. Purification from human platelets and structural characterization. J Biol Chem 1988; 263:6407-6415.Google Scholar
  66. 66.
    Taipale J, Miyazono K, Heldin C-H, Keski-Oja J. Latent transforming growth factor-β1 associates to fibroblast extracellular matrix via latent TGF-β binding protein. J Cell Biol 1994; 124:171–181.PubMedCrossRefGoogle Scholar
  67. 67.
    Miyazono K, Hellman U, Wenstedt C, Heldin C-H. A role of the latent TGF-β 1-binding protein in the assembly and secretion of TGF-βl. EMBO J 1991; 10:1091–1101.PubMedGoogle Scholar
  68. 68.
    Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J. Human mast cell chymase and leukocyte leastase release latent transforming growth factor-βl from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995; 270:4689–4696.PubMedCrossRefGoogle Scholar
  69. 69.
    Eklov S, Funa K, Nordgren H, Olofsson A, Kanzaki T, Miyazono K, Nilsson S. Lack of the latent transforming growth factor β binding protein in malignant but not benign prostatic tissue. Cancer Res 1993; 53:3193–3197.PubMedGoogle Scholar
  70. 70.
    Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 1990; 346:281–283.PubMedCrossRefGoogle Scholar
  71. 71.
    Massague J. Receptors for the TGF-β family. Cell 1992; 69:1067–1070.PubMedCrossRefGoogle Scholar
  72. 72.
    Wrana J, Attisano L, Weisser R, Ventura F, Massague J. Mechanism of activation of TGF-β receptor. Nature 1994; 370:341–347.PubMedCrossRefGoogle Scholar
  73. 73.
    Lopez-Casillas F, Payne HM, Andres JL, Massague J. Betaglycan can act as a dual modulator of TGF-β access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994; 124:557–568.PubMedCrossRefGoogle Scholar
  74. 74.
    Attisano L, Carcamo J, Ventura F, Weis FMB, Massague J, Wrana J. Identification of human activin and TGF-β type I receptors that form heteromeric kinase complexes with type II receptors. Cell 1993; 75:671–680.PubMedCrossRefGoogle Scholar
  75. 75.
    Cheifetz S, Hernandez H, Laiho M, ten Dijke P, Iwata KK, Massague J. Distinct transforming growth factor-β (TGF-β) receptor subsets as determinants of cellular responsiveness to three TGF-β isoforms. J Biol Chem 1990; 265:20,533–20,538.PubMedGoogle Scholar
  76. 76.
    McKay K, Danielpour D. Novel 150 and 180 kDa glycoproteins that bind transforming growth factor (TGF)-βl but not TGF-β2 are present in several cell lines. J Biol Chem 1991; 266:9907-9911.Google Scholar
  77. 77.
    Ohta M, Greenberger JS, Anklesaria P, Bassols A, Massague J. Two forms of transforming growth factor-β distinguished by multipotential haematopoietic progenitor cells. Nature 1987; 329:539–541.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang H, Shaw ARE, Mak A, Letarte M. Endoglin is a component of the transforming growth factor (TGF)-β receptor complex of human pre-B leukemic cells. J Immunol 1996; 156:565–573.Google Scholar
  79. 79.
    St. Jacques S, Cymerman U, Pece N, Letarte M. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-β binding protein of endothelial and stromal cells. Endocrinology 1994; 34:2645–2657.CrossRefGoogle Scholar
  80. 80.
    Lastres P, Letamendia A, Zhang H, Rius C, Almendro N, Raab U, Lopez LA, Langa C, Fabra A, Letarte M, Bernabeu C. Endoglin modulates cellular responses to TGF-β 1. J Cell Biol 1996; 133:1109–1121.PubMedCrossRefGoogle Scholar
  81. 81.
    Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subsets of signals for the TGF-β superfamily. Cell 1996; 85:479–487.PubMedCrossRefGoogle Scholar
  82. 82.
    Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L-C, Bapat B, Gallingerr S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L. MADR2 maps to 18q21 and encodes a TGF—regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86:543–552.PubMedCrossRefGoogle Scholar
  83. 83.
    Macias-Silva M, Abdullah S, Hoodless P, Pirone R, Attisano L, Wrana JL. MADR is a substrate of the TGF-β receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87:1215–1224.PubMedCrossRefGoogle Scholar
  84. 84.
    Filmus J, Kerbel RS. Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-β during tumor progression. Curr Opin Oncol 1993; 5:123–129.PubMedGoogle Scholar
  85. 85.
    Ewen M. The cell cycle and the retinoblastoma protein family. Cancer Metast Rev 1994; 13:45–66.CrossRefGoogle Scholar
  86. 86.
    Battegay EJ, Raines EW, Seifert RA, Bowen-Pope F, Ross R. TGF-β induces bimodal proliferation of connective tissue cells via complex control of and autocrine PDGF loop. Cell 1990; 63:515–524.PubMedCrossRefGoogle Scholar
  87. 87.
    Guadagno TM, Assoian RK. Gl/S control of anchorage-independent growth in the fibroblast cell cycle. J Cell Biol 1991; 115:1419–1425.PubMedCrossRefGoogle Scholar
  88. 88.
    Kyu-Ho Han E, Guadagno TM, Dalton SL, Assoian RK. A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-βl control Gl/S transit specifically. J Cell Biol 1993; 1222:461–471.CrossRefGoogle Scholar
  89. 89.
    Laiho M, De-Caprio JA, Ludlow JW, Livingston DM, Massague J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell 1990; 62:175–185.PubMedCrossRefGoogle Scholar
  90. 90.
    Satterwhite DJ, Moses HL. Mechanisms of transforming growth factor-beta 1-induced cell cycle arrest. Invasion Metast 1994-1995; 14:309–318.Google Scholar
  91. 91.
    Sherr CJ. Cancer cell cycles. Science 1996; 274:1672–1677.PubMedCrossRefGoogle Scholar
  92. 92.
    Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J-Y, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993; 73: 487–497.PubMedCrossRefGoogle Scholar
  93. 93.
    Weinberg RA. The retinoblastoma gene and gene product. In: Franks LM (ed). Cancer surveys. Tumor suppressor genes, the cell cycle and cancer, vol. XII. Cold Spring Harbor Laboratory, Cold Spring Harborx, NYXII, 1992; pp. 43–79.Google Scholar
  94. 94.
    Koff A, Ohtsuki M, Polyak K, Roberts J, Massague J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science 1993; 260:536–239.PubMedCrossRefGoogle Scholar
  95. 95.
    Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358:259–261.PubMedCrossRefGoogle Scholar
  96. 96.
    Pietenpol JA, Holt JT, Stein RW, Moses HL. Transforming growth factor-β1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci USA 1990; 87:3758–3762.PubMedCrossRefGoogle Scholar
  97. 97.
    Fernandez-Pol JA, Talked VD, Klos DJ, Hamilton PD. Suppression of the EGF-dependent induction of c-myc proto-oncogene expression by transforming growth factor-β in a human breast carcinoma cell line. Biochem Biophys Res Commun 1987; 144:1197–1205.PubMedCrossRefGoogle Scholar
  98. 98.
    Roberts PD, Kin S-J, Sporn MB. Is there a common pathway mediating growth inhibition by TGF-β and the retinoblastoma gene product. Cancer Cells 1991; 3:19–21.PubMedGoogle Scholar
  99. 99.
    Laiho M, Ronnstrand L, Heino J. Control of JunB and extracellular matrix protein expression by transforming growth factor-β is independent of simian virus 40 T antigen-sensitive growth-inhibitory events. Mol Cell Biol 1991; 11:972–978.PubMedGoogle Scholar
  100. 100.
    Li L, Hu JS, Olson EN. Different members of the jun photo-oncogene family exhibit distinct patterns of expression in response to type β transforming growth factor. J Biol Chem 1990; 265:1556–1562.PubMedGoogle Scholar
  101. 101.
    Reynisdottir I, Polyak K, lavarone A, Massague J. Kip/cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Devel. 1995; 9:1831–1945.PubMedCrossRefGoogle Scholar
  102. 102.
    Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371:251–261.CrossRefGoogle Scholar
  103. 103.
    Polayak K, Kato J, Soloman J, Sherr C, Massague J, Roberts J, Koff A. P27Kip 1, a cyclin-cdk inhibitor link transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Devel 1994; 8:9–22.CrossRefGoogle Scholar
  104. 104.
    Datto MB, Yu Y, Wang XF. Functional analysis of the transforming growth factor beta responsive elements in the WAF/Cipl/p21 promoter. J Biol Chem 1995; 270: 28, 623–28, 628.Google Scholar
  105. 105.
    Hunter T, Pines J. Cyclins and cancer II: cyclin D and CDK inhibitors come of age. 1994; 79:573–582.Google Scholar
  106. 106.
    Hall M, Peters G. Genetic alterations in cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer. Adv Cancer Res 1996; 68:67–108.PubMedCrossRefGoogle Scholar
  107. 107.
    Motokura T, Bloom T, Kin HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A. A novel cyclin encoded by a bell-linked candidate oncogene. Nature 1991; 350:512–515.PubMedCrossRefGoogle Scholar
  108. 108.
    Jen J, Harper W, Bigner S, Papadopoulos N, Markowitz S, Willson J, Kinzler K, Vogelstein B. Deletion of p16 and p15 genes in brain tumors. Cancer Res 1994; 54:6353–6358.PubMedGoogle Scholar
  109. 109.
    Elledge SJ, Harper JW. cdk inhibitors: on the threshold of checkpoints and development. Curr Opinion Cell Biol 1994; 6:847–852.PubMedCrossRefGoogle Scholar
  110. 110.
    Herman J, Jen J, Merio A, Baylin S. Hypermethylation-associated inactivation indicates a tumor suppressor role of pl5INK4B1. Cancer Res 1996; 56:722–727.PubMedGoogle Scholar
  111. 111.
    Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27kipl, a cyclin-dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals. Cell 1994; 78:59–66.PubMedCrossRefGoogle Scholar
  112. 112.
    Toyoshima H, Hunter T. p27, a novel inhibitor of Gl-cyclin-cdk protein kinase activity is related to p21. Cell 1994; 78:67–74.PubMedCrossRefGoogle Scholar
  113. 113.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27kipl. Cell 1996; 85:721–732.PubMedCrossRefGoogle Scholar
  114. 114.
    Fero, ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai L-H, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27kip1-deficient mice. Cell 1996; 85:733–744.PubMedCrossRefGoogle Scholar
  115. 115.
    Mal A, Poon RYC, Howe PH, Toyoshima H, Hunter T, Harter M. Inactivation of p27kipl by the viral E1A oncoprotein in TGF—treated cells. Nature 1996; 380:262–266.PubMedCrossRefGoogle Scholar
  116. 116.
    Kawamata N, Morosetti R, Miller CW, Park D, Spirin, KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilczynski S, Lee YY, Bartrum CR, Koefler HP. Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/kipl in human malignancies. Cancer Res 1995; 55:2266–2269.PubMedGoogle Scholar
  117. 117.
    Ponce-Castaneda MV, Lee M-H, Latres E, Polyak K, Lacombe L, Montgomery K, Matthew S, Krauter K, Sheinfeld J, Massague J, Cordon-Cardo C. p27jipl: chromosomal mapping to 12pl2–12pl3x.1 and absence of mutations in human tumors. Cancer Res. 1995; 55:1211–1214.PubMedGoogle Scholar
  118. 118.
    Hengst L, Reed S. Translation control of p27kipl accumulation during the cell cycle. Science 1996; 271:1861–1864.PubMedCrossRefGoogle Scholar
  119. 119.
    Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koof A. Enhanced ribosomal association of p27kipl mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 1997; 272:7093–7098.PubMedCrossRefGoogle Scholar
  120. 120.
    Pagano M, Tarn SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269:682–685.PubMedCrossRefGoogle Scholar
  121. 121.
    Barinaga M. A new twist to the cell cycle. Science 1995; 269:631, 632.Google Scholar
  122. 122.
    King RW, Glotzer M, Kirschner MW. Mutagenic analysis of the destruction signal of mitotic cyclin and structural characterization of ubiquitinated intermediates. Mol Biol Cell 1996; 7:1343-1357.Google Scholar
  123. 123.
    Buchler M, Friess H, Schultheiss KH, Gebhardt CH, Muhrer KH, Winkelmann M, Wagner T, Klapdor R, Muller G, Beger HG. A randomized controlled trial of adjuvant immuno-therapy (murine monoclonal antibody 494/32) in resectable pancreatic cancer. Cancer 1991; 168:1507–1512.CrossRefGoogle Scholar
  124. 124.
    Gudjonsson B. Cancer of the pancreas. 50 years of surgery. Cancer 1987; 60:2284–2303.Google Scholar
  125. 125.
    Baldwin RL, Korc M. Growth inhibition of human pancreatic carcinoma cells by transforming growth factor beta-1. Growth Factors 1993; 8:23–34.PubMedCrossRefGoogle Scholar
  126. 126.
    Baldwin RL, Friess H, Yokoyama M, Lopez ME, Kobrin MS, Buchler MW, Korc M. Attenuated ALK-5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. Int J Cancer 1996; 67:283–288.PubMedCrossRefGoogle Scholar
  127. 127.
    Yamanaka Y, Friess H, Buchler M, Beger HG, Gold LI, Korc M. Synthesis and expression of transforming growth factor β-1, β-2, and β-3 in the endocrine and exocrine pancreas. Diabetes 1993; 42:746–756.PubMedCrossRefGoogle Scholar
  128. 128.
    Friess H, Yamanaka Y, Buchler M, Beger HG, Kobrin MS, Baldwin RL, Korc M. Enhanced expression of the type II transforming growth factor β receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Res 1993; 53:2704–2707.PubMedGoogle Scholar
  129. 129.
    Nauman M, Savitskaia N, Eilert C, Schramm A, Kalthoff H, Schmiegel W. Frequent codeletion of pl6/MTS1 and p15/MTS2 and genetic alterations in p16/MTS1 in pancreatic tumors. Gastroenterology 1996; 110:1215–1224.CrossRefGoogle Scholar
  130. 130.
    Hahn SA, Schutte M, Shamsul Hoque ATM, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271:350–356.PubMedCrossRefGoogle Scholar
  131. 131.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AMM, Bos JL. Genetic alterations during colorectal tumor development. N Engl J Med 1988; 319:213–221.CrossRefGoogle Scholar
  132. 132.
    Yamaguchi T, Toguchida J, Yamamuro T, Kotoura Y, Takada N, Kawaguchi N, Kaneko Y, Nakamura Y, Sasaki MS, Ushizaki K. Allelotype analysis in osteosarcomas; frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res 1992; 52:2419–2423.PubMedGoogle Scholar
  133. 133.
    Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Volgestein B. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247:40–56.CrossRefGoogle Scholar
  134. 134.
    Migdalska A, Molineus G, Demuynck H, Evans GS, Ruscetti F, Dexter TM. Growth inhibitory effects of transforming growth factor-betal in vivo. Growth Factors 1991; 4:239–245.PubMedCrossRefGoogle Scholar
  135. 135.
    Barnard JA, Beauchamp RD, Coffey RJ, Moses HL. Regulation of intestinal epithelial cell growth by transforming growth factor type β. Proc Natl Acad Sci USA 1989; 86:1578–1582.PubMedCrossRefGoogle Scholar
  136. 136.
    Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial monolayers. Gastroenterology 1993; 105:1323–1332.PubMedCrossRefGoogle Scholar
  137. 137.
    Barnard JA, Warwick GJ, Gold LI. Localization of transforming growth factor β isoforms in the normal murine small intestine and colon. Gastroenterology 1993; 105:67–73.PubMedGoogle Scholar
  138. 138.
    Gang Q, Babyatsky M, Gold LI, Podolsky DK, Ahnen DJ. Localization of TGF-β1 mRNA and protein in intestinal mucosa: Specific expression in the epithelium, submitted for publication.Google Scholar
  139. 139.
    Hall PA, Coates PJ, Ansari B, Hopwood W. Regulation of cell numbers in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 1994; 107:3569–3577.PubMedGoogle Scholar
  140. 140.
    Wang CY, Eshelman JR, Wilson JKV, Markowitz S. Both transforming growth factor-β and substrate release are inducers of apoptosis in a human colon adenoma cell line. Cancer Res 1995; 55:5101–5105.PubMedGoogle Scholar
  141. 141.
    Manning AM, Williams AC, Game SM, Paraskeva C. Differential sensitivity of human colonic adenoma and carcinoma cells to transforming growth factor β (TGF-β): conversion of an adenoma cell line to a tumorigenic phenotype is accompanied by a reduced response to the inhibitory effects of TGF-β. Oncogene 1991; 6:1471–1476.PubMedGoogle Scholar
  142. 142.
    Fan D, Chakrabarty S, Seid C, Bell CW, Schackert H, Morikawa K, Fidler IJ. Clonal stimulation of human colon carcinomas and human renal cell carcinomas mediated by TGF-β1. Cancer Commun 1989; 1:117–125.PubMedGoogle Scholar
  143. 143.
    Hsu S, Huang F, Hafez M, Winawer S, Friedman E. Colon carcinoma cells switch their response to transforming growth factor-β1 with tumor progression. Cell Growth Differen 1994; 5:267–275.Google Scholar
  144. 144.
    Huang F, Newman E, Kerbel R, Friedman E. TGF-β 1 is an autocrine positive regulator of colon carcinoma U9 cells in vivo as shown by transfection of a TGF-β 1 antisense expression plasmid. Cell Growth Differen 1995; 6:1653–1642.Google Scholar
  145. 145.
    Yan Z, Winawer S, Friedman E. Two different signal transduction pathways can be activated by transforming growth factor βl in epithelial cells. J Biol Chem 1994; 269:13,231–13,237.PubMedGoogle Scholar
  146. 146.
    Wu S, Theodorescu D, Kerbel RS, Wilson JKV, Mulder KM, Humphrey LE, Brattain MG. TGF-β 1 is an autocrine negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense vector. J Cell Biol 1992; 116:187-196.Google Scholar
  147. 147.
    Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 1996;110:375–382.Google Scholar
  148. 148.
    Robson H, Anderson E, James RD, Schofeld PF. Transforming growth factor βl expression in human colorectal tumours: and independent prognostic marker in a subgroup of poor prognosis patients. Brit J Cancer 1995; 74:753–758.CrossRefGoogle Scholar
  149. 149.
    Picon A, Gold LI, Wang J-P, Klimstra D, Cohen A, Friedman E. Metastatic human colon cancers express elevated levels of TGF-β 1, submitted for publication.Google Scholar
  150. 150.
    Hsu S, Huang F, Friedman E. Paracrine PDGF-B increases colon cancer growth in vivo. J Cell Physiol 1995; 165:230–245.CrossRefGoogle Scholar
  151. 151.
    Morson BC. The polyp-cancer sequence in the large bowel. Proc Royal Soc Med 1974; 67:451–454.Google Scholar
  152. 152.
    Risio M, Lipkin M, Candelaresi G, Bertone A, Coverlizza S, Rossini PF. Correlations between rectal mucosal cell proliferation and the clinical and pathological features of non-familial neoplasia of the large intestine. Cancer Res. 1991; 51:1917–1921.PubMedGoogle Scholar
  153. 153.
    Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiello FM, Zehnbauer BA, Hamilton SR, Jones RJ. Inhibition of apoptosis during development of colorectal cancer. Cancer Res 1995; 55:1811–1816.PubMedGoogle Scholar
  154. 154.
    Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med 1997; 3:152–154.CrossRefGoogle Scholar
  155. 155.
    Leach FS, Elledge SJ, Sherr CJ, Willson JKV, Markowitz S, Kinzler KW, Vogelstein B. Amplification of cyclin genes in colorectal cancer. Cancer Res 1993; 53:1986–1989.PubMedGoogle Scholar
  156. 156.
    Eshelman JR, Markowitz SD. Microsatellite instability in inherited and sporadic neoplasms. Curr Opin Oncol 1995; 7:83–89.Google Scholar
  157. 157.
    Ionov Y, Peinado AM, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993; 363:558–561.PubMedCrossRefGoogle Scholar
  158. 158.
    Marra G, Boland CR. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 1995; 87:114–1125.CrossRefGoogle Scholar
  159. 159.
    Risinger JI, Berchuk A, Koheler MF, Watson P, Lynch HT, Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res 1993; 53:5100–5103.PubMedGoogle Scholar
  160. 160.
    Dos Santos NR, Seruca R, Constancia M, Sobrinho-Simoes M. Microsatellite instability at multiple loci in gastric carcinoma: clinicopathological implications and prognosis. Gastroenterology 1996; 110: 38–44.PubMedCrossRefGoogle Scholar
  161. 161.
    Risio M, Reato G, Francia di Celle P, Fizzotti M, Rossini FP, Foa R. Microsatellite instability is associated with the histological features of the tumor in nonfamilial colorectal cancer. Cancer Res 1996; 56:5470–5474.PubMedGoogle Scholar
  162. 162.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan R, Zborowska E, Kinzler K, Vogelstein B, Brattain M, Willson K. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995; 268:1336–1338.PubMedCrossRefGoogle Scholar
  163. 163.
    Myeroff LL, Parsons R, Kim S-J, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K, Bang Y-J, Lee HY, Park J-G, Lynch HT, Roberts AB, Vogelstein B, Markowitz S. A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 1995; 55:5545–5547.PubMedGoogle Scholar
  164. 164.
    Lu S-L, Akiyama Y, Nagasaki H, Saitoh K, Yuasa Y. Mutations of the transforming growth factor-β type II receptor gene and genomic instability in hereditary nonpolyposis colorectal cancer. Biochem Biophys Res Commun 1995; 216:452–457.PubMedCrossRefGoogle Scholar
  165. 165.
    Parsons R, Myeroff LL, Liu B, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res 1995; 55:5548–5550.PubMedGoogle Scholar
  166. 166.
    Wright PA, Quirke P, Attanoos R, Williams GT. Molecular pathology of gastric carcinoma: progress and prospects. Human Pathol 1992; 23:848–859.CrossRefGoogle Scholar
  167. 167.
    Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award lecture on cancer epidemiology and prevention. Cancer Res. 1992; 52:6735–6740.PubMedGoogle Scholar
  168. 168.
    Fuchs CS, Mayer RJ. Gastric carcinoma. N Engl J Med 1995; 333:32–41.PubMedCrossRefGoogle Scholar
  169. 169.
    Hirayama D, Fujimori T, Satonaka K, Nakamura T, Kitazawa S, Horio M, Maeda S, Nagasako K. Immunohistochemical study of epidermal growth factor and transforming growth factor-β in the penetrating type of early gastric cancer. Human Pathol 1992; 23:681–685.CrossRefGoogle Scholar
  170. 170.
    Mizoi T, Ohtani H, Miyazono K, Miyazawa M, Matsuo S, Nagura H. Immunoelectron microscopic localization of transforming growth factor beta 1 and latent transforming growth factor beta 1 binding protein in human gastrointestinal carcinomas: qualitative differences between cancer stromal cells. Cancer Res 1993; 53:183–190.PubMedGoogle Scholar
  171. 171.
    Wheater PR, Burkitt KG, Daniels VG. Wheater’s Functional Histology. 3rd ed., Churchill Livingstone. Edinburgh, London, New York, Tokyo 1993.Google Scholar
  172. 172.
    Mahara K, Kato J, Terui T, Takimoto R, Horimoto M, Murakami T, Mogi Y, Watanabe N, Kohogo Y, Niitsu Y. Transforming growth beta 1 secreted from scirrhous gastric cancer cells is associated with excess collagen deposition in the tissue. Brit J Cancer 1994; 69:777–783.PubMedCrossRefGoogle Scholar
  173. 173.
    Ura H, Obara T, Yokota K, Shibata Y, Okamura K, Namik M. Effects of transforming growth factor beta released from gastric carcinoma cells on the contraction of collagen-matrix gels containing fibroblasts. Cancer Res 1991; 51:3550–3554.PubMedGoogle Scholar
  174. 174.
    Yoshiura K, Ota S, Terano A, Takahashi M, Hata Y, Kawabe T, Mutoh H, Hiraishi H, Nakata R, Okano K. Growth regulation of rabbit gastric epithelial cells and proto-oncogene expression. Dig Dis Sci 1994; 39:1454–1463.PubMedCrossRefGoogle Scholar
  175. 175.
    Yamaoto M, Maehara Y, Sakagichi Y, Kusmoto T, Ichiyoshi Y, Sugimachi K. Transforming growth factor-betal induces apoptosis in gastric cancer cells through a p53-in-dependent pathway. Cancer 1996; 77:1628–1633.Google Scholar
  176. 176.
    Tahara E. Growth factors and oncogenes in human gastrointestinal carcinomas. J Cancer Res Clin Oncol 1990; 116:121–131.PubMedCrossRefGoogle Scholar
  177. 177.
    Akiyama Y, Nakasaki H, Nihei Z, Iwama T, Nomizu T, Utsunomiya J, Yuasa Y. Frequent microsatellite instabilities and analyses of the related genes in familial gastric cancers. Jap J Cancer Res 1996; 87:595–601.CrossRefGoogle Scholar
  178. 178.
    Morrow CP, Curtin JP, Townsend DE. Tumors of the endometrium. In: Synopsis of Gynecologic concology, fourth ed. Churchill Livingstone, New York, pp. 153–188.Google Scholar
  179. 179.
    Gurpide E. Endometrial cancer: biochemical and clinical correlates. J Natl Cancer Inst 1991; 83:405–416.PubMedCrossRefGoogle Scholar
  180. 180.
    Silverberg SG. Hyperplasia and carcinoma of the endometrium. Semin Diagn Pathol. 1988; 5:135–153.PubMedGoogle Scholar
  181. 181.
    Creasman WT, Eddy GL. Recent advances in endometrial cancer. Semin Surg Oncol 1990; 6:405–416.CrossRefGoogle Scholar
  182. 182.
    Holinka C. Aspects of hormone replacement therapy. In: The Human Endometrium (Bulletti C, Gurpide E, Flamigni C, eds.) Ann NY Acad. Sci. 1994; 734:271–284.Google Scholar
  183. 183.
    Jovanovic AS, Boynton KA, Mutter GL. Uteri of women with endometrial carcinoma contain a histopathological spectrum of monoclonal putative precancers, some with microsatellite instability. Cancer Res 1996; 56:1917–1921.PubMedGoogle Scholar
  184. 184.
    Smith DC, Prentice RI, Bauermeister DE. Endometrial carcinoma: histopathology, survival, and exogenous estrogens. Gynecol Obstet Invest 1981; 12:169–173.PubMedCrossRefGoogle Scholar
  185. 185.
    Hulka BS. Links between hormone replacement therapy and neoplasia. Fertil Steril 1994; 62:1688–1755.Google Scholar
  186. 186.
    Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerman DL, and Cronin WM. Endometrial cancer in Tamoxifen-treated and nontreated asymptomatic, post menopausal breast cancer patients. Gynecol Oncol 1994; 86:527–537.Google Scholar
  187. 187.
    Lanza A, Alba E, Re A, Tessarolo M, Leo L, Bellino R, Lauricella A, Wierdis J. Endometrial carcinoma in breast cancer patients treated with Tamoxifen. Rev Eur J Gynecol Oncol 1994; 15:455–459.Google Scholar
  188. 188.
    Yang NN, Venugopalan M, Hardikar S, Glasebrook A. Identification of an estrogen response element activated by metabolites of 17β-estradiol and Raloxifene. Science 1996; 273:1222–1224.PubMedCrossRefGoogle Scholar
  189. 189.
    Hayward SW, Cunha GR, Dahiya R. Normal development and carcinogenesis of the prostate: a unifying hypothesis. Basis for cancer management. Ann Y Acad Sci 1994; 784:50–62.CrossRefGoogle Scholar
  190. 190.
    Cunha GR, Foster BA, Sugimura Y, Horn YK. Keratinocyte growth factor as mediator of mesenchymal-epithelial interactions in the development of androgen target organs. Cell Devel Biol 1996; 7:203–210.CrossRefGoogle Scholar
  191. 191.
    Cunha GR, Young P, Brody JR. Role of uterine epithelium in the development of myometrial smooth muscle cells. Biol Reproduc 1989; 40:861–871.CrossRefGoogle Scholar
  192. 192.
    Cooke PS, Uchima FDA, Fujii DK, Bern HA. Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc Natl Acad Sci USA 1986; 83:2109–2113.PubMedCrossRefGoogle Scholar
  193. 193.
    Bruner K, Rodger W, Gold L, Korc M, Hargrove J, Matrisian L, Osteen K. Transforming growth factor-β mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma. Proc Natl Acad Sci USA 1995; 92:7362–7366.PubMedCrossRefGoogle Scholar
  194. 194.
    Boyd J, Kauffman D. Expression of transforming growth factor-β1 by human endometrial carcinoma cell lines: inverse correlation with effects on growth rate and morphology. Cancer Res 1990; 50:3394–3399.PubMedGoogle Scholar
  195. 195.
    Sakata M, Kurachi H, Ikegam H, Jikihara H, Morishige K, Miyake A, Terakawa N, Tanizawa O. Autocrine growth mechanism by transforming growth factor-β (TGF-β 1) and TGF-β1-receptor regulation by epidermal growth factor in a human endometrial cancer cell line IK-90. Int J Cancer 1993; 54: 862–867.PubMedCrossRefGoogle Scholar
  196. 196.
    Presta M, Maier JAM, Rusnati M, Moscatelli D, Ragnotti G. Modulation of plasminogen activator activity in human endometrial adenocarcinoma cell lines by basic fibroblast growth factor and transforming growth factor-β. Cancer Res 1988; 48:6384–6389.PubMedGoogle Scholar
  197. 197.
    Tan P, Cady B, Wanner M, Worland P, Cukor B, Magi-Galluzzi C, Lavin P, Draetta G, Pagano M, Loda M. The cell cycle inhibitor p27kip1 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas.Cancer Res 1997; 57:1259–1263.PubMedGoogle Scholar
  198. 198.
    Valverius EM, Walker-Jones D, Bates SE, Stampher MR, Clark R, McCormick F, Dickson RB, Lippman ME. Production and responsiveness to transforming growth factor β in normal and oncogene transformed human mammary epithelial cells. Cancer Res 1989; 49:6269–6274.PubMedGoogle Scholar
  199. 199.
    Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB. Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 1987; 48:417–428.PubMedCrossRefGoogle Scholar
  200. 200.
    Arteaga CL, Coffey RJ, Dugger TC, McCutchen CM, Moses HL, Lyons RM. Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: evidence for negative autocrine regulation by transforming growth factor β. Cell Growth Different 1990; 1:367–374.Google Scholar
  201. 201.
    Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ. Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differen 1995; 6:1151–1161.Google Scholar
  202. 202.
    Dickens T-A, Colletta A. The pharmacological manipulation of members of the transforming growth factor beta family in the chemoprevention of breast cancer. BioEssays 1993; 15:71–74.PubMedCrossRefGoogle Scholar
  203. 203.
    Perry RR, Kang Y, Greaves BR. Relationship between tamoxifen-induced transforming growth factor-β 1 expression, cytostasis and apoptosis in human breast cancer cells. Brit J Cancer 1995; 72:1441–1446.PubMedCrossRefGoogle Scholar
  204. 204.
    Chen H, Tritton TR, Kenny N, Absher M, Chiu JF. Tamoxifen induces TGF-β 1 activity and apoptosis of human MCF-7 breast cancer cells. J Cell Biochem 1996; 61: 9–17.PubMedCrossRefGoogle Scholar
  205. 205.
    Knabbe C, Kopp A, Hilgers W, Land D, Muller V, Zugmaier G, Jonat W. Regulation and role of TGF-beta production in breast cancer. Ann NY Acad Sci 1996; 784:263–276.CrossRefGoogle Scholar
  206. 206.
    MacCallum J, Keen JC, Barlett JM, Thompson AM, Dixon JM, Miller WR. Changes in expression of transforming growth factor beta mRNA isoforms in patients undergoing tamoxifen therapy. Brit J Cancer 1996; 74:474–478.PubMedCrossRefGoogle Scholar
  207. 207.
    Dickson RB, Bates SE, McManaway ME, Lippman ME. Characterization of estrogen-responsive transforming activity in human breast cancer cell lines. Cancer Res 1986; 46:1701–1713.Google Scholar
  208. 208.
    Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet JC, Powles TJ, Coombes RC. Growth factor expression in normal, benign and malignant breast tissue. Brit J Cancer 1988; 296:1621–1624.Google Scholar
  209. 209.
    Welch DR, Fabra A, Nakajima M. Transforming growth factor-β stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990; 87:7678–7682.PubMedCrossRefGoogle Scholar
  210. 210.
    Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA. Transforming growth factor (TGF)-β 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differen 1993; 4:193–201.Google Scholar
  211. 211.
    Pierce DF, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BLM, Moses HL. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Devel 1993; 7:2308–2317.PubMedCrossRefGoogle Scholar
  212. 212.
    Sun LZ, Wu G, Willson JKV, Zborowska E, Yang J, Rajkarunanayake I, Wang J, Gentry LE, Wang X-F, Brittain MG. Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 1994; 269:26,449–26,455.PubMedGoogle Scholar
  213. 213.
    Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner G, Haslam S, Bronson T, Elledge SJ, and Weinberg RA. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995; 82:621-630.Google Scholar
  214. 214.
    Buckley MF, Sweeney KJE, Hamilton JA, Sini RL, Manning DL, Nicholson RI, DeFazio A, Watts CKW, Musgrove EA, Sutherland RL. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8:2127–2133.PubMedGoogle Scholar
  215. 215.
    Brenner AJ, Aldaz CM. Chromosome 9p allelic loss and p 16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res 1995; 55:2892–2895.PubMedGoogle Scholar
  216. 216.
    Burger PC. Malignant astrocytic neoplasms: classification, pathologic anatomy, and response to treatment. Semin Oncol 1986; 13:16–26.PubMedGoogle Scholar
  217. 217.
    Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, Rowley DA. A highly immunogenic tumor transfected with a murine transforming growth factor β1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990; 87:1486–1490.Google Scholar
  218. 218.
    Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R. T cell supressor factor from human glioblastoma cells is a 12.5 kd protein closely related to transforming growth factor-β. EMBO J 1987; 6:1633–1636.PubMedGoogle Scholar
  219. 219.
    Weiler M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and immune privilege of the brain. Brain Res 1995; 21:128–151.Google Scholar
  220. 220.
    Wallick SC, Figari IS, Morris RE, Levinson AD, Palladino MA. Immunoregulatory role of transforming growth factor-β (TGF-β) in development of killer cells: comparison of active and latent TGF-β 1. J Exp Med 1990; 172:1777–1784.PubMedCrossRefGoogle Scholar
  221. 221.
    Venter DJ, Bevan KL, Ludwig RL, Riley TEW, Jat PS, Thomas DGT, Noble MD. Retinoblastoma gene deletions in human glioblastoma. Oncogene 1991; 6:445–448.PubMedGoogle Scholar
  222. 222.
    Hermanson M, Funa K, Hartman M, Cleasson-Wels L, Heldin C-H, Westermark B, Nister M. Platelet-derived growth factors and its receptors in human glioma tissue: expression of mRNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992; 52:3213–3219.PubMedGoogle Scholar
  223. 223.
    Kiefer R, Supler ML, Tpyka KV, Streit WJ. In situ detection of transforming growth factor-beta mRNA in experimental rat glioma and reactive glial cells. Neurosci Lett 1994; 166:161–164.PubMedCrossRefGoogle Scholar
  224. 224.
    Yamada N, Kato M, Yamashita H, Nister M, Miyazono K. Enhanced expression of transforming growth factor-β and its type I and type II receptors in human glioblastoma. Int J Cancer 1995; 62:386–392.PubMedCrossRefGoogle Scholar
  225. 225.
    Helseth E, Unsgaard G, Dalen A. The effects of type beta transforming growth factor on proliferation and epidermal growth factor expression in a human glioblastoma cell line. J Neuro-Oncol 1989; 6:269–276.CrossRefGoogle Scholar
  226. 226.
    Sasaki A, Naganuma H, Satoh E, Nagasaka M, Isoe S, Nakano S, Nukui H. Secretion of transforming growth factor-beta 1 and-beta 2 by malignant glioma cells. Neurologia Medico-Chirurgica 1995; 55:423–430.CrossRefGoogle Scholar
  227. 227.
    Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret JM. Effects of TGF-β 1 on astroglial cells in culture. J Neurochem 1990; 54:1056–1061.PubMedCrossRefGoogle Scholar
  228. 228.
    Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL. TGF-βl and TGF-β2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 1991; 49:129–139.PubMedCrossRefGoogle Scholar
  229. 229.
    Jachimczak P, Hessdorfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U. Transforming growth-factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 1996; 65:332–337.PubMedCrossRefGoogle Scholar
  230. 230.
    Riffini PA, Rivoltini L, Silvani A, Boiardi A, Parmiani G. Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair cavity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 1993; 36: 409–416.CrossRefGoogle Scholar
  231. 231.
    Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Rainer A, Domes R, Schlingensiepen KH, Brysch W. The effect of transforming growth factor-β2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosup-pression in malignant glioma. J Neurosurg 1993; 78:944–951.PubMedCrossRefGoogle Scholar
  232. 232.
    Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black KL, Royston I, Sobol RE. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 1996; 93:2902–2914.CrossRefGoogle Scholar
  233. 233.
    Adams Pearson C, Pearson D, Shibahara S, Hofsteenge J, Ciquet-Erishmann R. Tenascin: cDNA cloning and induction by TGF-β. EMBO J 1988; 10:2677–2981.Google Scholar
  234. 234.
    Zagzag D. Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 1995; 146:293–309.PubMedGoogle Scholar
  235. 235.
    Merzak A, McCrea S, Koocheckpour S, Pilkington GJ. Control of human glioma cell growth, migration, and invasion in vitro by transforming growth factor beta 1. Brit J Cancer 1994; 70:199–203.PubMedCrossRefGoogle Scholar
  236. 236.
    Grundmann E, Rossner A, Ueda Y et al. Current aspects of the pathology of osteosarcomas. Anitcancer Res 1995; 15:1023–1033.Google Scholar
  237. 237.
    Robey PG, Young MF, Flanders KC et al. Osteoblasts synthesize and respond to transforming growth factor-type β (TGF-β) in vitro. J Cell Biol 1987; 105:457–463.PubMedCrossRefGoogle Scholar
  238. 238.
    Joyce ME, Roberts AB, Sporn MB, and Bolander ME. Transforming growth factor-β and the initiation of chrondrogenesis and osteogenesis in the rat femur. J Cell Biol 1990; 110:2195–2207.PubMedCrossRefGoogle Scholar
  239. 239.
    Beck LS, Amenot EP, Deguzman L, et al. TGF-β1 induces bone closure of skull defects temporal dynamics of bone formation in defects exposed to rh-TGF-β1. J Bone Min Res 1993; 8:753–761.CrossRefGoogle Scholar
  240. 240.
    Centrella M, Horowitz MC, Wozney JM et al. Transforming growth factor-β gene family members in bone. Endocrinol Rev 1994; 15:27–39.Google Scholar
  241. 241.
    Kloen P, Jennings CL, Gebhardt MC et al. Expression of transforming growth factor-beta (TGF-β) receptors, TGF-βl and TGF-β2 production and autocrine growth control. Int J Cancer 1994; 58:440–445.PubMedCrossRefGoogle Scholar
  242. 242.
    Erlebacher A, Dernyck R. Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 1996; 132:195–210.PubMedCrossRefGoogle Scholar
  243. 243.
    McCune BK, Patterson K, Chandra RS et al. Expression of transforming growth factor-β isoforms in small round cell tumors of childhood. Am J Pathol 1993; 142:1098–1100.Google Scholar
  244. 244.
    Teot LA, O’Keefe RJ, Rosier RN, O’Connell JX, Fox EJ, Hicks DG. Extraosseous primary and recurrent giant cell tumors: transforming growth factor-β1 and-β2 expression may explain metaplastic bone formation. Hum Pathol 1996; 27:625–632.PubMedCrossRefGoogle Scholar
  245. 245.
    Barton R, Neff L, Louvard CA et al. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100 kDa lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985; 101:2210–2222.CrossRefGoogle Scholar
  246. 246.
    Yoshikawa H, Rettig WJ, Takaoka K et al. Expression of bone morphogenetic proteins in human osteosarcomas. Cancer 1994; 73:85–91.PubMedCrossRefGoogle Scholar
  247. 247.
    Fuegas O, Guriec N, Babin-Boilletot A et al. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol. 1996; 14:467–472.Google Scholar
  248. 248.
    Friend SH, Horowitz JM, Gerber MR, et al. Deletions of DNA sequence in both retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci 1987; 24:9059–9063.CrossRefGoogle Scholar
  249. 249.
    Shew J-Y, Chen P-L, Bookstein R, Lee Y-HP, Lee W-H. Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (ppl 10RB) in osteosarcomas and synovial sarcomas. Oncogene Res 1989; 1:205–214.Google Scholar
  250. 250.
    Kim J, Johnson K, Chen HJ, Carroll S, Laughton A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 1997; 388:304–308.PubMedCrossRefGoogle Scholar
  251. 251.
    Hayashi H, Abdollah S, Qiu Y, Cai J, Yong-Yao X, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 1997; 89:1165–1173.PubMedCrossRefGoogle Scholar
  252. 252.
    Takanami I, Tanaka F, Hashizume T, Kodaira S. Roles of the transforming growth factor beta 1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. J Surg Oncol 1997; 64:262–267.PubMedCrossRefGoogle Scholar
  253. 253.
    Tu H, Jacobs SC, Borkowski A, Kyprianou N. Incidence of apoptosis and cell proliferation in prostate cancer: relationship with TGF-β1 and bcl-2 expression. Int J Cancer 1996; 69:357–363.PubMedCrossRefGoogle Scholar
  254. 254.
    Eastham JA, Truong LD, Rogers E, Kattan M, Flanders KC, Scardio PT, Thompson TC. Transforming growth factor-betal: comparative immunohistochemical localization in human primary and metastatic prostate cancer. Lab Invest 1995; 73:628–635.PubMedGoogle Scholar
  255. 255.
    Troung LD, Kadmon D, McCune BK, Flanders KC, Scardino PT, Thompson TC. Association of transforming growth factor-βl with prostate cancer: an immunohistochemical study. Hum Pathol 1993; 24:4–9.CrossRefGoogle Scholar
  256. 256.
    Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 1996; 383:691–696.PubMedCrossRefGoogle Scholar
  257. 257.
    Kretzchmar M, Lui F, Hata A, Doody J, Massague J. The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 1997; 11: 984–995.CrossRefGoogle Scholar
  258. 258.
    Lui F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massague J. A human Mad protein as a BMP-regulated transcriptional activator. Nature 1996; 381:620–623.CrossRefGoogle Scholar
  259. 259.
    Hoodless PA, Haerry T, Abdollah S, Stapleton M, O’Connor MB, Attisano L, Wrana JL. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996; 85:489–500.PubMedCrossRefGoogle Scholar
  260. 260.
    Sekelsky JJ, Newfield SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 1995; 139:1347–1358.PubMedGoogle Scholar
  261. 261.
    Parekh TV, Del Priore G, Schatz F, Demopoulos R, Korc M, Gold LI. Decreased growth inhibitory responses of primary cultures of endometrial carcinoma cells to TGF-β1 is accompanied by altered response to gonadal steroids. Proc Am Assoc Cancer Res 38:3025.Google Scholar
  262. 262.
    Parekh TV, Schatz F, Del Priore G, Demopoulos R, Gold LI. Altered expression of TGF-β isoforms and TGF-β receptors in stromal cells derived from endometrial cancer patients in response to gonadal steroids. Gynecol Oncol 1997; 64:310.Google Scholar
  263. 263.
    Yamaguchi T, Toguchida J, Yamamuro T, Kotoura Y, Takada, N, Kauaguchi N, Kaneko Y, Nakamura T, Sasaki MS, Ishizaki K. Allotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res 1992; 52:2419-2423.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Leslie I. Gold
  • Trilok Parekh

There are no affiliations available

Personalised recommendations