Skip to main content

New Biochemical Markers for Heart Diseases

  • Chapter
Cardiac Markers

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

The practice of cardiology continues to evolve with a better understanding of the pathophysiology of coronary artery diseases and the development of new therapeutic modalities. Although many groups, such as the American Heart Association, have been successful in making the general public better aware of risk factors, the incidence of coronary artery disease (CAD)* continues to be very high, because the average age of the population in Western countries continues to increase. As such, there are new demands being placed on the in vitro diagnostics (IVDs) industry to improve the performance of existing cardiac markers and to develop novel markers for new cardiac disease indications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash AS (1993) Outcomes analysis and the practice of medicine. Hosp. Practice 28(10): 10–11.

    CAS  Google Scholar 

  2. Testa MA and Simonson DC (1996) Assessment of quality-of-life outcomes. N. Engl. J. Med. 334:835–840.

    Article  PubMed  CAS  Google Scholar 

  3. The GISSI Study Group (1986) Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1:397–402.

    Google Scholar 

  4. The ISAM Study Group. A prospective trial of intravenous streptokinase in acute myocardial infarction. N. Engl. J. Med. 314:1465–1471.

    Google Scholar 

  5. The Thrombolysis in Myocardial Infarction (TIMI) Study Group (1985) The thrombolysis in myocardial infarction (TIMI) trial. N. Engl. J. Med. 312:932–936

    Google Scholar 

  6. Rawles J (1996) Magnitude of benefit from earlier thrombolytic treatment in acute myocardial infarction: new evidence from Grampian region early anistreplase trial (GREAT). Br. Med. J. 312:212–216.

    Article  CAS  Google Scholar 

  7. Sherry S (1987) Recombinant tissue plas-minogen activator (rt-PA): is it the thrombolytic agent of choice for an evolving acute myocardial infarction? Am. J. Cardiol. 59: 984–989.

    Article  PubMed  CAS  Google Scholar 

  8. Schreiber T (1987) Review of clinical studies of thrombolytic agents in acute myocardial infarction. Am. J. Med. 83:(Suppl. 2A): 20–25.

    Article  PubMed  CAS  Google Scholar 

  9. Ryan TJ, Anderson JL, Antman EM, Braniff BA, Brooks NH, Califf RM, Hillis D, Hiratzka LF, Rapaport E, Riegel BJ, Russell RO, Smith EE, and Weaver WD (1996) ACC/AHA guidelines for the management of patients with acute myocardial infarction: a report of the American College of Cardiology/American Heart Assocation Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J. Am. Coll. Cardiol. 28:1328–1419.

    Article  PubMed  CAS  Google Scholar 

  10. van Blerk M, Maes V, Huyghens L, Derde MP, Meert R, and Gorus FK (1992) Analytical and clinical evaluation of creatine kinase MB mass assay by IMx: comparison with MB isoenzyme activity and serum myoglo-bin for early diagnosis of myocardial infarction. Clin. Chem. 38:2380–2386.

    PubMed  Google Scholar 

  11. Puleo PR, Guadagno PA, and Roberts R (1990) Early diagnosis of acute myocardial infarction based on an assay for subforms of creatine kinase-MB. Circulation 82: 759–764.

    Article  PubMed  CAS  Google Scholar 

  12. Mair J, Morandell D, Genser N, Lechleitner P, Dienstl F, and Puschendorf B (1995) Equivalent early sensitivities of myoglobin, creatine kinase MB mass, creatine kinase iosoform ration, and cardiac troponins I and T for acute myocardial infarction. Clin. Chem. 41:1266–1272.

    PubMed  CAS  Google Scholar 

  13. Bhayana V, Cohoe S, and Henderson AR (1995) Evaluation of the Cardio Rep for creatine kinase isoforms analysis. Clin. Chem. 41: S184.

    Google Scholar 

  14. Laurino J, Bender EW, Kessimian N, Chang J, Pelletier T, and Usatequi M (1996) Comparative sensitivities and specificities of the mass measurements of CK-MB2, CK-MB, and myoglobin for diagnosing acute myocardial infarction. Clin. Chem. 42: 1454–1459.

    PubMed  CAS  Google Scholar 

  15. Silverman LM and Christenson RH (1994) Amino acids and proteins. In: Tietz textbook of clinical chemistry, 2nd ed., Burtis CA and Ashwood ER, eds., Philadelphia, Saunders, 713,714.

    Google Scholar 

  16. Pietila K, Harmoinen A, Hermens W, Simoons ML, Van de Werf F, and Verstraete M (1993) Serum C-reactive protein and infarct size in myocardial infarct patients with a closed versus an open infarct-related coronary artery after thrombolytic therapy. Eur. Heart J. 14:915–919.

    Article  PubMed  CAS  Google Scholar 

  17. Azar RR, Seecharran B, Feng YJ, Giri S, Wu AH, Kiernan F, McKay R, and Waters DD (1996) Coronary angioplasty induces a systemic inflammatory response. Circulation 94:1559–1560.

    Google Scholar 

  18. Thompson SG, Kienast J, Pyke SD, Haverkate F, and van de Loo JC (1995) Hemostatic factors and risk of myocardial infarction or sudded death in patients with angina pectoris. European Concernted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N. Engl. J. Med. 332:635–641.

    Article  PubMed  CAS  Google Scholar 

  19. Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB, and Maseri A (1994) The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N. Engl. J. Med. 331:417–424.

    Article  PubMed  CAS  Google Scholar 

  20. Haverkate F, Thompson SG, Pyke SDM, Gallimore JR, and Pepys MB (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. Lancet 349:462–466.

    Article  PubMed  CAS  Google Scholar 

  21. Kazmierczak M, Sobieska M, Biktorowicz K, and Wysocki H (1995) Changes of acute phase proteins glycosylation profile as a possible prognostic marker in myocardial infarction. Int. J. Cardiol. 49:201–207.

    Article  PubMed  CAS  Google Scholar 

  22. Ueda S, Ikeda U, Yamamoto K, Takahashi M, Nishinaga M, Nago N, and Shimada K (1996) C-reactive protein as a predictor of cardiac rupture after acute myocardial infarction. Am. Heart J. 131:857–860.

    Article  PubMed  CAS  Google Scholar 

  23. Ridker PM, Cashman M, Stampter MJ, Tracy RP, and Hennekins CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336:973–979.

    Article  PubMed  CAS  Google Scholar 

  24. Becker RC, Cannon CP, Bovill EG, Tracy RP, Thompson B, Katterud GL, Randall A, and Braunwald B (1996) Prognostic value of plasma fibrinogen concentration in patients with unstable angina and non-Q-wave myo-cardial infarction (TIMI IIIB trial). Am. J. Cardiol. 78:142–147.

    Article  PubMed  CAS  Google Scholar 

  25. Ambrose JA (1996) Thrombosis in ischemic heart disease. Arch. Intern. Med. 156: 1382–1394.

    Article  PubMed  CAS  Google Scholar 

  26. Wieding JU and Husias C (1992) Determination of soluble fibrin: a comparison of 4 different methods. Thromb. Res. 65: 745–756.

    Article  PubMed  CAS  Google Scholar 

  27. Dempfle LE, Dollman M, Lill H, Puzzovio D, Dessauer A, and Heene DL (1995) Binding of a new monoclonal antibody against N-terminal heptapeptide of fibrin alpha-chain to fibrin polymerization site “A”: effect of fibrinogen and figrinogen derivatives, and pretreatment of samples with NaSCN. Blood Coagulation and Fibrinolysis 4:79–86.

    Google Scholar 

  28. Mosesson MW (1992) The roles of fibrinogen and fibrin in hemostasis and thrombosis. Semin. Haematol 29:177–188.

    CAS  Google Scholar 

  29. Carville DGM, Dimitrijevic N, Walsh M, Digirolamo T, Brill EM, Drew N, and Gargan PE (1996) Thrombus precursor protein (TpP): marker of thrombosis early in the pathogenesis of myocardial infarction. Clin. Chem. 42:1537–1541.

    PubMed  CAS  Google Scholar 

  30. (1997) A blood test for detection of intravas-cular thrombosis. Measurement of thrombus precursor protein. South Bend, IN, American Biogenetic Sciences.

    Google Scholar 

  31. Ardissino D, Merlini PA, Gamba G, Bar-beris P, Demicheli G, Testa S, Colombi E, Poli A, Fetiveau R, and Montemartini C (1996) Circulation 93:1634–1639.

    Article  PubMed  CAS  Google Scholar 

  32. Ushiyama S, Laue TM, Moore KL, Erickson HP, and McEver RP (1993) Structural and functional characteristics of monomeric soluble P-selectin and comparison with membrane P-selectin. J. Biol. Chem. 268: 15, 229-15, 237.

    Google Scholar 

  33. George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, and Newman PJ (1986) Platelet surface glyco-proteins. Studies on resting and activated platelets and platelet membrane microparti-cles in normal subjects and observations in patients during adult respiratory distress syndrome and cardiac surgery. J. Clin. Invest. 78:340–348.

    Article  PubMed  CAS  Google Scholar 

  34. McEver RP (1990) The clinical significance of platelet membrane glycoproteins. Hema-tol. Oncol. Clin. North Am. 4:87–105.

    CAS  Google Scholar 

  35. Nurden AT, Bihour C, Macchi L, Lacaze D, Durrieu C, Besse P, Dachary J, and Hourdille P (1993) Platelet activation in thrombotic disorders. Nouv. Rev. Fr. Hematol. 3:67–71.

    Google Scholar 

  36. Ikeda H, Takajo Y, Ichiki K, Ueno T, Maki S, Noda T, Sugi K, and Imaizumi T (1995) Increased soluble form of p-selectin in patients with unstable angina. Circulation 92:1693–1696.

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda H, Nakayama H, Oda T, Kuwano K, Muraishi A, Sugi K, Koga Y, and Toshima H (1994) Soluble form of P-selectin in patients with acute myocardial infarction. Coronary Artery Dis. 5:515–518.

    CAS  Google Scholar 

  38. Gawaz M, Neumann FJ, Ott I, Schiessler A, and Schomig A (1995) Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation 93:229–237.

    Article  Google Scholar 

  39. Morris S, Wu AHB, and Heller GV (1996) New diagnostic approaches to patients with acute chest pain: role of cardiac imaging and biochemical markers. Curr. Opinion Cardiol. 11:386–393.

    Article  CAS  Google Scholar 

  40. Bilodeau L, Theroux P, Gregoire J, Gagnon D, and Arsenault A (1991) Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical, electrocardiographic and angiographic findings. J. Am. Coll. Cardiol. 18:1684–1691.

    Article  PubMed  CAS  Google Scholar 

  41. Varetto T, Cantalupi D, Cerruti A, Compagnoni-Pesenti M, Leone G, and Orlandi C (1990) Tc99m sestamibi and 2D-echo imaging for rule-out of acute ischemia in patients with chest pain and non-diagnostic ECG [Abstract]. Circulation 94 (Suppl.):I367.

    Google Scholar 

  42. Hilton TC, Thompson RC, Williams HJ, Saylors R, Fulmer H, and Stowers SA (1994) Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J. Am. Coll. Cardiol. 23:1016–1022.

    Article  PubMed  CAS  Google Scholar 

  43. Morris S, Wu A, Ahlberg AW, Feng YJ, Piriz JM, Shehata A, and Heller GV (1996) Correlation of acute technetium-99m SPECT myocardial perfusion imaging and cardiac serum markers in patients with spontaneous angina [Abstract]. J. Nuclear Med. 37:58.

    Google Scholar 

  44. Hearse J (1979) Cellular damage during myocardial ischaemia: metabolic changes leading to enzyme leakage. In: Enzymes in Cardiology: Diagnosis and Research, Hearse DJ and de Leiris J, eds., Chichester, UK, Wiley, pp. 1–19.

    Google Scholar 

  45. Rabitzsch G, Mair J, Lechleitner P, Noll F, Hofmann U, Kraus EG, Dienstl F, and Puschendorf B (1995) Immunoenzymomet-ric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin. Chem. 41:966–978.

    PubMed  CAS  Google Scholar 

  46. Mair J, Puschendorf B, Smidt J, Lechleitner P, Dienstl F, Noll F, Kraus EG, and Rabitzsch G (1994) Early release of glycogen phosphorylase in patients with unstable angina and transient ST-T alterations. Br. Heart 172:125–127.

    Article  Google Scholar 

  47. Rabitzsch G, Mair J, Leichleitner P, Noll F, Hofmann U, Krause EG, Dienstl F, and Putschedorf B (1993) Isoenzyme BB of glycogen phosphorylase b and myocardial infarction. Lancet 341:1032–1033.

    Article  PubMed  CAS  Google Scholar 

  48. Mair D, Mair J, Kraus EG, Balogh D, Puschendorf B, and Rabitzsch G (1994) Glycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur. J. Clin. Chem. Clin. Biochem. 32:543–547.

    PubMed  CAS  Google Scholar 

  49. Roos W, Eymann E, Symannek M, Dup-penthaler J, Wodzig KWH, Pelsers M, and Glatz JFC (1995) Monoclonal antibodies to human heart fatty-acid binding protein. J. Immunol. Meth. 183:149–153.

    Article  CAS  Google Scholar 

  50. Yoshimoto K, Tanaka T, Somiya K, Tsuji R, Okamoto F, Kawamura K, Ohkaru Y, Asayama K, and Ishii H (1995) Human heart-type cytoplasmic fatty acid-binding protein as an indicator of acute myocardial infarction. Heart Vessels 10:304–309.

    Article  PubMed  CAS  Google Scholar 

  51. van Nieuwenhoben FA, Kleine AH, Wodzig KWH, Hermens WT, Kragten HA, Maessen JG, Punt CD, van Dieijen MP, van der Vusse GJ, and Glatz JFC (1995) Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 92:2848–2854.

    Article  Google Scholar 

  52. Willems GM, Van der Veen FH, Huysmans HA, Flameng W, De Meyere R, Van der Laarse A, Van der Vusse GJ, and Hermens WT (1985) Enzymatic assessment of myocardial necrosis after cardiac surgery: differentiation from skeletal muscle damage, hemolysis, and liver injury. Am. Heart J. 109:1243–1252.

    Article  PubMed  CAS  Google Scholar 

  53. Tanaka T, Hirota Y, Sohmiya KI, Nizhimura S, and Kawamura K (1991) Serum and urine human heart fatty acid-binding protein in acute myocardial infarction. Clin. Biochem. 24:195–201.

    Article  PubMed  CAS  Google Scholar 

  54. Tsuji R, Tanaka T, Sohmiya K, Hirata Y, Yoshimoto K, Kinoshita K, Kushaka Y, Kawamara K, Morita H, Abe S, and Tanaka H (1993) Human heart-type cytoplasmic fatty acid-binding protein in serum and urine during hyperacute myocardial infarction. Int. J.Cardiol. 41:209–217.

    Article  PubMed  CAS  Google Scholar 

  55. Aranega AE, Reina A, Velez C, Alvarez L, Melguizo C, and Arange A (1993) Circulating alpha-actin in angina pectoris. J. Mol. Cell. Cardiol. 25:15–22.

    Article  PubMed  CAS  Google Scholar 

  56. Aranega AE, Reina A, Muros MA, Alvarez L, Prados J, and Aranega A (1993) Circulation α-actin protein in acute myocardial infarction. Int. J. Cardiol. 38:49–55.

    Article  PubMed  CAS  Google Scholar 

  57. Prados J, Melguizo C, Aranega AE, Escobar-Jimenez F, Cobo V, Gonzales R, and Aranega A (1995) Circulating alpha-actin in angina pectoris. Int. J. Cardiol. 51: 127–130.

    Article  PubMed  CAS  Google Scholar 

  58. Konstam MA, Dracup K, Baker DW, Bottorff MB, Brooks NH, Daceg RA, et al. (1994) Heart Failure: evaluation and care of patients with left-ventriculay systolic dysfunction. Clinical Practice Guideline, No. 11. US Department of Health and Human Services Public Health Service, Rockville, MD, June.

    Google Scholar 

  59. Marantz PR, Tobin JN, Wassertheil-Smoller S, Steingart RM, Wexler JP, Budner N, Lense L, and Wachspress J (1988) The relationship between left-ventricular systolic function and congestive heart failure diagnosed by clinical criteria. Circulation 77:607–612.

    Article  PubMed  CAS  Google Scholar 

  60. Dougherty AH, Naccarelli GV, Gray EL, Hicks CH, and Goldstein RA (1984) Congestive heart failure with normal systolic function. Am. J. Cardiol. 54:778–782.

    Article  PubMed  CAS  Google Scholar 

  61. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CGA, Edwards WD, Schaff HV, and Burnett JC (1993) Natriuretic peptide system in human heart failure. Circulation 88:1004–1009.

    Article  PubMed  CAS  Google Scholar 

  62. Yandle TG, Richards AM, Gilbert A, Fisher S, Holmes S, and Espiner EA (1993) Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J. Clin. Endocrinol. Metab. 76: 832–838.

    Article  PubMed  CAS  Google Scholar 

  63. Mukoyama M, Nakao K, Hosoda K, Suga SI, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, Kambayashi Y, Inouye K, and Imura H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest. 87:1402–1412.

    Article  PubMed  CAS  Google Scholar 

  64. Saito Y, Nakao K, Arai H, Nishimura K, Okumara K, Obata K, Takemura G, Fujiwara H, Sugaware A, Yamada T, Itoh H, Mukogama M, Hosoda K, Kawai C, Ban T, Yasue H, and Imura H (1993) Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J. Clin. Invest. 83:298–305.

    Article  Google Scholar 

  65. Ungerer M, Bohm M, Elce JS, Erdmann E, and Lohse MJ (1993) Altered expression of β-adrenergic receptor kinase and β1-adren-ergic receptors in the failing human heart. Circulation 87:454–463.

    Article  PubMed  CAS  Google Scholar 

  66. Morita E, Yasue H, Yoshimura M, Ogawa H, Jougasaki M, Matsumura T, Mukoyama M, and Nakao K (1993) Increased plasma levels of brain natriureti peptide in patients with acute myocardial infarction. Circulation 88: 82–91.

    Article  PubMed  CAS  Google Scholar 

  67. Mair J (1997) Progress in myocardial damage detection: new biochemical markers for clinicians. Crit. Rev. Clin. Lab. Sci. 34:1–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, A.H.B., McCord, R.G. (1998). New Biochemical Markers for Heart Diseases. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1806-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1806-7_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7292-2

  • Online ISBN: 978-1-4612-1806-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics