Skip to main content

Biochemistry and Molecular Biology of Troponins I and T

  • Chapter
Cardiac Markers

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

Troponins I (TnI) and T (TnT) were first recognized as a serum markers of myocar-dial injury in the late 1970s and 1980s, respectively (1,2), but the proteins of the tro-ponin complex are believed to be ancient: appearing some 250 million years ago, before the divergence of avian and mammalian lines (3). An epitope on cardiac tro-ponin T (cTnT,* a 17-residue peptide) has been identified that has been conserved across vertebrate phyla (4), and major portions of the carboxy-terminal region of Tnl are conserved across avian and mammalian species (5). Studies of alternative RNA splicing of exons, one of the mechanism underlying the expression of different TnT isoforms in various striated muscle types, have revealed this to be common to both birds and mammals (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, and Kubler W (1989) Enzyme linked immunoassay of cardiac troponin T for the detection of acute myo-cardial infarction in patients. J. Mol. Cell. Cardiol. 21:1349–1353.

    Article  PubMed  CAS  Google Scholar 

  2. Cummins P, McGurk B, Littler WA (1979) Possible diagnostic use of cardiac specific contractile proteins in assessing cardiac damage. Clin. Sci. 56:30.

    Google Scholar 

  3. Wu Q-L, Jha PK, Raychowdhury MK, Du Y, Leavis PC, and Sarkars S (1994) Isolation and characterization of human fast skeletal β troponin T cDNA: comparative sequence analysis of isoforms and insight into the evolution of members of multigene family. DNA Cell Biol. 13:217–223.

    Article  PubMed  CAS  Google Scholar 

  4. Malouf NN, McMahon D, Oakeley AE, and Anderson PA (1992) A cardiac troponin T epitope conserved across phyla. J. Biol. Chem. 267:9269–9274.

    PubMed  CAS  Google Scholar 

  5. Wu Q-L, Raychowdhury MK, Du Y, Jha PK, Leavis PC, and Sarkar S (1993) Characterization of a rabbit fast skeletal troponin I cDNA: a comparative sequence analysis of vertebrate isoforms and tissue-specific expression of a single copy gene. J. DNA Sequencing and Mapping 4:113–121.

    CAS  Google Scholar 

  6. Breitbart RE, Andreadis A, and Nadal-Ginart B (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Ann. Rev. Biochem. 56:467–495.

    Article  PubMed  CAS  Google Scholar 

  7. Ebashi S and Kodama A (1965) A new protein factor promoting aggregation of tropomyosin. J. Biochem. (Tokyo) 58: 107–108.

    CAS  Google Scholar 

  8. Ebashi S and Kodama A (1966) Interaction of troponin with f-actin in the presence of tropomyosin. J. Biochem. (Tokyo) 59: 425–426.

    CAS  Google Scholar 

  9. Hartshorne DJ and Mueller H (1968) Frac-tionation of troponin into two distinct proteins. Biochem. Biophys. Res. Commun. 31:647–653.

    Article  PubMed  CAS  Google Scholar 

  10. Ebashi S, Wakabayashi T, and Ebashi F (1971) Troponin and its components. J. Biochem. (Tokyo) 69:441–445.

    CAS  Google Scholar 

  11. Greaser ML and Gergely J (1971) Reconstitution of troponin activity from three protein components. J. Biol. Chem. 246: 4226–4233.

    PubMed  CAS  Google Scholar 

  12. Staprans I, Takahashi H, Russell MP, and Watanabe S (1972) Skeletal and cardiac tro-ponins and their components. J. Biochem. (Tokyo) 72:723–735.

    CAS  Google Scholar 

  13. Greaser M and Gergely J (1973) Purification and properties of the components from troponin. J. Biol. Chem. 248:2125–2133.

    PubMed  CAS  Google Scholar 

  14. Katus HA, Scheffold T, Remppis A, and Zehlein J (1992) Proteins of the troponin complex. Lab Med. 23:311–317.

    Google Scholar 

  15. Farah CS and Reinach FC (1995) The troponin complex and regulation of muscle contraction. FASEB J. 9:755–767.

    PubMed  CAS  Google Scholar 

  16. Heeley DH, Golkosinska K, and Smillie LB (1987) The effects of troponin T fragments T1 and T2 on the binding of nonpolymeriz-able tropomyosin to f-actin in the presence and absence of troponin I and troponin C. J. Biol. Chem. 262:9971–9978.

    PubMed  CAS  Google Scholar 

  17. Geeves MA and Lehrer SS (1994) Troponin increases the size of the tropomyosin-actin cooperative unit of the regulatory switch of the muscle thin filament [Abstract]. Biophys. J. 66:A309.

    Google Scholar 

  18. Flicker PF, Phillips GN Jr, and Cohen C (1982) Troponin and its interactions with tropomyosin: an electron microscope study. J. Mol. Biol. 162:495–501.

    Article  PubMed  CAS  Google Scholar 

  19. Voss EM, Sharkey SW, Gernert AE, Murakami MM, Johnston RB, Hsieh CC, and Apple FS (1995) Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium: infarct sizing using serum profiles. Arch. Pathol. Lab. Med. 119:799–806.

    PubMed  CAS  Google Scholar 

  20. Katus HG, Remppis A, and Scheffold T (1991) Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am. J. Cardiol. 67:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  21. Martin AF (1981) Turnover of cardiac troponin subunits. J. Biol. Chem. 256:964–968.

    PubMed  CAS  Google Scholar 

  22. Hein S, Scheffold T, and Schaper J (1995) Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J. Thorac. Cardiovasc. Surg. 110:89–98.

    Article  PubMed  CAS  Google Scholar 

  23. Guth BD, Schulz R, and Heusch G (1993) Time course and mechanisms of contractile dysfunction during acute myocardial ischemia. Circulation 87(Suppl.):IV35–IV42.

    PubMed  CAS  Google Scholar 

  24. Adams JE III, Schechtman KB, Landt Y, Ladenson JH, and Jaffe AS (1994) Comparable detection of acute myocardial infarction by creatine kinase MB Isoenzyme and cardiac troponin I. Clin. Chem. 40: 1291–1295.

    PubMed  CAS  Google Scholar 

  25. Mair J, Genser N, Morandell D, Maier J, Mair P, Lechleitner P, Calzolari C, Larue C, Ambach E, Dienstl F, Pan B, and Puschendorf B (1996) Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin. Chim. Acta 245:19–38.

    Article  PubMed  CAS  Google Scholar 

  26. Lavigne L, Waskiewicz S, Pervaiz G, Fagan G, and Whiteley G (1996) Investigation of serum troponin I heterogeneity and com-plexation to troponin T [Abstract]. Clin. Chem. 42: S312.

    Google Scholar 

  27. Katrukha A, Petterson K, Lovgren T, Mitrunen K, Beresnikova A, Bulargina T, Esakova T, and Severina M (1996) Cardiac troponin I-cardiac troponin C complex in serum of patients with acute myocardial infarction [Abstract]. Proc. XVI Int. Cong. Clin. Chem. 221.

    Google Scholar 

  28. Feng YJ, Moore RE, and Wu AHB (1997) Identification and analysis of cardiac troponin complexes in blood by gel filtration chromatography [Abstract]. Clin. Chem. 43: S159.

    Google Scholar 

  29. Waskiewicz D, Sahaney J, Lavigne L, Fagan G, and Whiteley G (1996) Sample stability differences among troponin I kits [Abstract]. Clin. Chem. 42:S311.

    Google Scholar 

  30. Krudy GA, Kleerekoper Q, Guo X, Howarth JW, Solaro RJ, and Rosvear PR (1994) NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J. Biol. Chem. 269:23,731-23,735.

    Google Scholar 

  31. LaRue C and Marquet P-Y (1996) Stabilized composition of troponin. UK Patent Office, GB 2 275 774.

    Google Scholar 

  32. Zehelein J, Schroeder A, Kraus O and Brown B (1995) Release kinetics of troponin T and troponin I in patients with acute myo-cardial infarction [abstract]. Circulation 92(Suppl.):I–678.

    Google Scholar 

  33. Katrukha A, Petterson K, Lovgren T, Mitrunen K, and Mykkanen P (1996) Cardiac troponin C influences the binding of monoclonal antibodies to cardiac troponin I (abstract). Proc. XVI Int. Cong. Clin. Chem. 221.

    Google Scholar 

  34. Zot AS and Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann. Rev. Biophys. Chem. 16:535–559.

    Article  CAS  Google Scholar 

  35. Potter JD, Sheng Z, Pan B-S, and Zhao J (1995) A direct regulatory role for troponin T and a dual role for troponin C in the Ca+2 regulation of muscle contraction. J. Biol. Chem. 270:2557–2562.

    Article  PubMed  CAS  Google Scholar 

  36. Lin T-I, Mayadevi M, and Dowben RM (1993) Modulation of troponin-C binding to troponin T by Ca+2, probed by fluorescence. J. Chin. Chem. Soc. 40:607–619

    CAS  Google Scholar 

  37. Karczewski P, Bartel S, and Krause E-G (1993) Protein phosphorylation in the regulation of cardiac contractility and vascular smooth muscle tone. Curr. Opinion Nephrol. Hypertens. 2:33–40.

    Article  CAS  Google Scholar 

  38. Gusev NB, Barskaya NV, Verin AD, Duzhenkova IV, Khuchua ZA, and Zheltova AO (1983) Some properties of cardiac troponin T structure. Biochem. J. 213:123–129.

    PubMed  CAS  Google Scholar 

  39. Kitsis RN and Scheuer J (1996) Functional significance of alterations in cardiac contractile protein isoforms. Clin. Cardiol. 19:9–18.

    Article  PubMed  CAS  Google Scholar 

  40. Quirk PG, Patchell VB, Gao Y, Levine BA, and Perry SV (1995) Sequential phosphorylation of adjacent serine residues on the N-terminal region of cardiac troponin-I: structure-activity implications of ordered phosphorylation. FEBS Lett. 370:175–178.

    Article  PubMed  CAS  Google Scholar 

  41. Venema RC and Kuo JF (1993) Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J. Biol. Chem. 268:2705–2711.

    PubMed  CAS  Google Scholar 

  42. Gahlmann R, Troutt AB, Wade RP, Gunning P, and Ledes L (1987) Alternative splicing generates variants in important functional domains of human slow skeletal troponin T. J. Biol. Chem. 262:16,122-16,126.

    Google Scholar 

  43. Townsend PJ, Farza H, MacGeoch C, Spurr KNK, Wade R, Gahlamann R, Yocoub M, and Barton PJ (1994) Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome lq. Genomics 21:311–316

    Article  PubMed  CAS  Google Scholar 

  44. Briggs MM, Maready M, Schmidt JM, and Schachat F (1994) Identification of a fetal exon in the human fast troponin T gene. FEBS Lett. 350:37–40.

    Article  PubMed  CAS  Google Scholar 

  45. Zhu L, Perez-Alvarado G, and Wade R (1994) Sequencing of a cDNA encoding the human fast-twitch skeletal muscle isoform of troponin I. Biochim. Biophys. Acta 1217:338–340.

    Article  PubMed  CAS  Google Scholar 

  46. Corin SJ, Juhasz O, Zhu L, Conley P, Keded L, and Wade R (1994) Structure and expression of the human slow twitch skeletal muscle troponin I gene. J. Biol. Chem. 269:10,651-10,659.

    Google Scholar 

  47. Vallins WJ, Brand NJ, Dabhade N, Butler-Browne G, Yacoub MH, and Barton PJ (1990) Molecular Cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett. 270:57–61.

    Article  PubMed  CAS  Google Scholar 

  48. Ordahl CP (1986) The skeletal and cardiac a-actin genes are coexpressed in early embryonic striated muscle. Dev. Biol. 117: 488–492.

    Article  PubMed  CAS  Google Scholar 

  49. Seidel U, Bober E, Winter B, Lenz S, Lohse P, and Arnold HH (1987) The complete nucleotide sequences of cDNA clones coding for human myosin light chains 1 and 3. Nucleic Acids Res. 15:4989.

    Article  PubMed  CAS  Google Scholar 

  50. Sutherland CJ, Esser KA, Elsom VL, Gordon ML, and Hardeman EC (1993) Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation. Dev. Dynam. 196:25–36.

    Article  CAS  Google Scholar 

  51. Dhoot GK, Frearson N, and Perry SV (1979) Polymorphic forms of troponin T and troponin C and their localization in striated muscle cell types. Exp. Cell Res. 122: 339–350.

    Article  PubMed  CAS  Google Scholar 

  52. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg JP, Seidman JG, and Seidman CE (1994) ±-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77:701–712.

    Article  PubMed  Google Scholar 

  53. Mesnard L, Logeart D, Taviaux S, Diriong S, Mercadier JJ, and Samson F (1995) Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. Circ. Res. 76:687–692.

    Article  PubMed  CAS  Google Scholar 

  54. Samson F, Lee JE, Hung WY, Potter JG, Herbstreith M, Roses AD, and Gilbert JR (1990) Isolation and localization of a slow troponin (TnT) gene on chromosome 19 by subtraction hybridization of a cDNA muscle library using myotonic dystrophy muscle cDNA. J. Neurosci. Res. 27:441–451.

    Article  PubMed  CAS  Google Scholar 

  55. Samson F, De Jong PJ, Trask BJ, Koza-Taylor P, Speer MC, Potter T, Roses AD, and Gilbert JR (1992) Assignment of the human slow skeletal troponin T gene to 19q13. 4 using somatic cell hybrids and fluorescence in situ hybridization analysis. Genomics 13:1374–1375.

    Article  PubMed  CAS  Google Scholar 

  56. Mao C, Baumgartner AP, Jha PK, Huang TH-M, and Sarkar S (1996) Assignment of the human fast skeletal troponin T gene (TNNT3) to chromosome 11p15. 5: evidence for the presence of 11pter in a mono-chromosome 9 somatic cell hybrid in NIGMS mapping panel 2. Genomics 31:385–388.

    Article  PubMed  CAS  Google Scholar 

  57. Bermingham N, Hernandez D, Balfour A, Gilmour F, Martin JE, and Fisher EMC (1995) Mapping TNNC1, the gene that encodes cardiac troponin I in human and the mouse. Genomics 30:620–622.

    Article  PubMed  CAS  Google Scholar 

  58. Wade R, Eddy R, Shows TB, and Kedes L (1990) cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle iso-form of troponin I. Genomics 7:346–357.

    Article  PubMed  CAS  Google Scholar 

  59. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, and Seidman CE (1995) Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  60. Medford RM, Nguyen HT, Destree AT, Summers E, and Nadal-Ginard B (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38:409–421.

    Article  PubMed  CAS  Google Scholar 

  61. Townsend PJ, Barton PJ, Yacoub MH, and Farza H (1995) Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart J. Mol. Cell Cardiol. 27:2223–2236.

    Article  CAS  Google Scholar 

  62. Anderson PAW, Malouf NN, Oakeley AE, Pagani ED, and Allen PD (1991) Troponin T isoform expression in humans: a comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ. Res. 69:1226–1233.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson PAW, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, and Kay BK (1995) Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ. Res. 76:681–686.

    Article  PubMed  CAS  Google Scholar 

  64. Briggs MM, McGinnis HD, and Schachat F (1990) Transitions from fetal to fast troponin T isoforms are coordinated with changes in tropomyosin and α-actinin isoforms in developing rabbit skeletal muscle. Dev. Biol. 140:253–260.

    Article  PubMed  CAS  Google Scholar 

  65. Saggin L, Gorza L, Ausoni S, and Schiaffino S (1990) Cardiac troponin T in developing, regenerating and denervated rat skeletal muscle. Development 110:547–554.

    PubMed  CAS  Google Scholar 

  66. Nadal-Ginard B and Mahdavi V (1989) Molecular basis of cardiac performance. J. Clin. Invest. 84:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  67. Tobacman LS and Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J. Biol. Chem. 262: 4059–4064.

    PubMed  CAS  Google Scholar 

  68. McAuliffe JJ, Gao L, and Solaro RJ (1990) Changes in myofibrillar activation and troponin C Ca+2 binding associated with troponin T isoform switching in developing rabbit heart. Circ. Res. 66:1204–1216.

    Article  PubMed  CAS  Google Scholar 

  69. Schachat FH, Diamond MS, and Brandt PW (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J. Mol. Biol. 198:551–554.

    Article  PubMed  CAS  Google Scholar 

  70. Mesnard L, Samson F, Espinasse I, Durand J, Neveux JY, and Mercadier JJ (1993) Molecular cloning and developmental expression of human cardiac troponin T. FEBS Lett. 328:139–144.

    Article  PubMed  CAS  Google Scholar 

  71. Solaro RJ, Powers FM, Gao L, and Gwathmey JK (1993) Control of myofilament activation in heart-failure. Circulation 87 (Suppl.):38–42.

    Article  Google Scholar 

  72. Saba Z, Nassar R, Ungerleider RM, Oakeley AE, and Anderson PAW (1996) Cardiac tro-ponin T isoform expression correlates with pathophysiological descriptors in patients who underwent corrective surgery for congenital heart disease. Circulation 94: 472–476.

    Article  PubMed  CAS  Google Scholar 

  73. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heimnamm C, Posival H, Kuwajimia G, Mikoshiba K, Just H, and Hasenfuss G (1995) Alterations of sar-coplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784.

    Article  PubMed  CAS  Google Scholar 

  74. Isumo S, Nadal-Ginard B, and Mahdavi V (1988) Protooncogene induction and repro-gramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA 85:339–343.

    Article  Google Scholar 

  75. Sabry MA and Dhoot GK (1991) Identification of and pattern of transitions of cardiac, adult slow and slow skeletal muscle-like embryonic isoforms of troponin T in developing rat and human skeletal muscles. J. Musc. Res. Cell Motil. 12:262–270.

    Article  CAS  Google Scholar 

  76. Toyota N and Shimada Y (1981) Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy. J. Cell Biol. 91:497–504.

    Article  PubMed  CAS  Google Scholar 

  77. Cooper TA and Ordahl CP (1984) A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226:979–982.

    Article  PubMed  CAS  Google Scholar 

  78. McAuliffe JJ, Roulier E, Aronow B, and White D (1994) Delineation of the cardiac troponin T expression pattern during murine development [Abstract]. J. Cell Biochem. 18D(Suppl.):519.

    Google Scholar 

  79. Mar JH, Iannello RC, and Ordahl CP (1992) Cardiac troponin T gene expression in muscle. Symp. Soc. Exp. Biol. (Engl.) 46: 237–249.

    CAS  Google Scholar 

  80. Bodor GS, Porterfield D, Voss E, Kelly J, Smith S, and Apple FS (1995) Cardiac tro-ponin-T composition in normal and regenerating human skeletal muscle [Abstract]. Clin. Chem. 41:S148.

    Google Scholar 

  81. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, and Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ. Res. 72:932–938.

    Article  PubMed  CAS  Google Scholar 

  82. Bhavsar PK, Brand NJ, Yacoub MH, and Barton PJR (1996) Isolation and characterization of the human cardiac troponin I gene (TNNI3). Genomics 35:11–23.

    Article  PubMed  CAS  Google Scholar 

  83. Krishan K and Dhoot GK (1996) Changes in some troponin and insulin-like growth factor messenger ribonucleic acids in regenerating and denervated skeletal muscles. J. Muscle Res. Cell Motil. 17:513–521.

    Article  PubMed  CAS  Google Scholar 

  84. Bodor GS, Porter S, Landt Y, and Ladenson JH (1992) Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin. Chem. 38: 2203–2214.

    PubMed  CAS  Google Scholar 

  85. Bhavsar PK, Dhoot GK, Cumming DVE et al. (1991) Developmental expression of troponin I isoforms in fetal human heart. FEBS Lett. 292:5–8.

    Article  PubMed  CAS  Google Scholar 

  86. Hunkler NM and Murphy AM (1990) cDNA sequence of human cardiac troponin I (cTnI) and expression of TnI isoforms in diseased hearts (Abstract). Circulation 82(Suppl.): III–188.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dean, K.J. (1998). Biochemistry and Molecular Biology of Troponins I and T. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1806-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1806-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7292-2

  • Online ISBN: 978-1-4612-1806-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics