Dopamine Receptors in Human Disease

Lessons from Targeted Mouse Mutants
  • Domenico Accili
  • John Drago
  • Sara Fuchs
Part of the Contemporary Endocrinology book series (COE, volume 6)


The neurotransmitter dopamine exerts a broad array of effects on the central nervous system, the cardiovascular, endocrine, and the genito-urinary systems (1,2). In the central nervous system, dopamine affects locomotion and behavior. In the cardiovascular system, dopamine affects heart rate and myocardial contractility. Dopamine effects on blood pressure and blood volume have been postulated to involve both brainstem and direct renal mechanisms, as well as peripheral blood flow and fluid balance (3). In the endocrine system, dopamine is a potent modulator of hypothalamic and pituitary functions. To elicit its effects, dopamine binds to specific receptors on the surface of target cells. In recent years, a spate of contributions have led to the identification of five subtypes of dopamine receptors. The five receptors are subdivided into two classes, referred to as Dl-like, and D2-like (4,5). It is generally held that each class mediates different effects. However, the specific role of each individual subtype has thus far been unclear. In this chapter, we analyze the role of mouse models of dopamine receptor defects in furthering our understanding of this complex system and its implications for the function of dopamine receptors in human disease.


Dopamine Receptor Dopamine Receptor Subtype Human Dopamine Dopamine Receptor Gene Basal Ganglion Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 1966;18:925–964.PubMedGoogle Scholar
  2. 2.
    Albrecht FE, Drago J, Felder RA, Printz MP, Eisner GM, Robillard JE, Sibley DR, Westphal HJ, Jose PA. Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. J Clin Invest 1996;97:2283–2288.PubMedCrossRefGoogle Scholar
  3. 3.
    van der Buuse M, Jones CR, and Wagner J. Brain dopamine D-2 receptor mechanisms in spontaneously hypertensive rats. Brain Res Bull. 1992;28:289–297.PubMedCrossRefGoogle Scholar
  4. 4.
    Sokoloff P, Schwartz J-C. Novel dopamine receptors half a decade later. Trends Pharmacol Sci 1995;16:270–275.PubMedCrossRefGoogle Scholar
  5. 5.
    Sibley DR, Monsma FJ. Molecular biology of dopamine receptors. Trends Pharmacol Sci 1992;13:61–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979;277:93–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Stoof JO, Kebabian JW. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 1981;294:366–368PubMedCrossRefGoogle Scholar
  8. 8.
    Bunzow JR, Van TH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988;336:783–787PubMedCrossRefGoogle Scholar
  9. 9.
    Dearry A, Gingrich JA, Falardeau P, Fremeau RJ, Bates MD, Caron MG. Molecular cloning and expression of the gene for a human Dl dopamine receptor. Nature 1990;347:72–76PubMedCrossRefGoogle Scholar
  10. 10.
    Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y, et al. Human dopamine Dl receptor encoded by an intronless gene on chromosome 5. Nature 1990;347:80–83.PubMedCrossRefGoogle Scholar
  11. 11.
    van Tol H, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991;350:610–614.PubMedCrossRefGoogle Scholar
  12. 12.
    Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990;347:146–151.PubMedCrossRefGoogle Scholar
  13. 13.
    Monsma FJ, Mahan LC, McVittie LD, Gerfen CR, Sibley. Molecular cloning and expression of a Dl dopamine receptor to adenylyl cyclase activation. Proc Natl Acad Sci USA 1990;87:6723–6727PubMedCrossRefGoogle Scholar
  14. 14.
    Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van TH, Niznik HB. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than Dl. Nature 1991;350:614–619.PubMedCrossRefGoogle Scholar
  15. 15.
    Vallar L and Meldolesi J. Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci 1989;10:74–77.PubMedCrossRefGoogle Scholar
  16. 16.
    Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O. Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4, 5-biphosphate hydrolysis in LtK-fibroblasts, hyperpolarization, and cytosolic-free Ca2+ concentration decrease in GH4C1 cells. J Biol Chem 1990;265:10320–10326.PubMedGoogle Scholar
  17. 17.
    Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang FT, Fremeau RJ, Caron MG. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second Dl dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci USA 1991;88:7491–7495.PubMedCrossRefGoogle Scholar
  18. 18.
    Memo M, Lovenberg W, Hanbauer I. Agonist-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. Proc Natl Acad Sci USA 1982;79:4456–4460.PubMedCrossRefGoogle Scholar
  19. 19.
    Neve KA, Henningsen RA, Bunzow JR, Civelli O. Functional characterization of a rat dopamine D-2 receptor cDNA expressed in a mammalian cell line. Mol Pharmacol 1989;36:446–451.PubMedGoogle Scholar
  20. 20.
    Minowa MT, Minowa T, Monsma FJ, Sibley DR, Mouradian MM. Characterization of the 5′ flanking region of the human Dl A dopamine receptor gene. Proc Natl Acad Sci USA 1992;89:3045–3049.PubMedCrossRefGoogle Scholar
  21. 21.
    Giros B, Martres MP, Pilon C, Sokoloff P, Schwartz JC. Shorter variants of the D3 dopamine receptor produced through various patterns of alternative splicing. Biochem Biophys Res Commun 1991;176:1584–1592.PubMedCrossRefGoogle Scholar
  22. 22.
    Fryxell KJ, Meyerowitz EM. The evolution of rhodopsins and neurotransmitter receptors. J Mol Evol 1991;33:367–378.PubMedCrossRefGoogle Scholar
  23. 23.
    Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 1989;342:923–926.PubMedCrossRefGoogle Scholar
  24. 24.
    Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR. Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 1989;342:926–929.PubMedCrossRefGoogle Scholar
  25. 25.
    Montmayeur JP, Guiramand J, Borrelli E. Preferential coupling between dopamine D2 receptors and G-proteins. Mol Endocrinol 1993;7:161–170.PubMedCrossRefGoogle Scholar
  26. 26.
    Senogles SE. The D2 dopamine receptor isoforms signal through distinct Gi alpha proteins to inhibit adenylyl cyclase. A study with site-directed mutant Gi alpha proteins. J Biol Chem 1994;269:23120–23127.Google Scholar
  27. 27.
    Liu YF, Civelli O, Grandy DK, Albert PR. Differential sensitivity of the short and long human dopamine D2 receptor subtypes to protein kinase C. J Neurochem 1992;59:2311–2317.PubMedCrossRefGoogle Scholar
  28. 28.
    Fishburn CS, Elazar Z, Fuchs S. Differential glycosylation and intracellular trafficking for the long and short isoforms of the D2 dopamine receptor. J Biol Chem 1995;270:29819–29824.PubMedCrossRefGoogle Scholar
  29. 29.
    Fishburn CS, Belleli D, David C, Carmon S, Fuchs S. A novel short isoform of the D3 dopamine receptor generated by alternative splicing in the third cytoplasmic loop. J Biol Chem 1993;268:5872–5878.PubMedGoogle Scholar
  30. 30.
    Schmauss C, Haroutunian V, Davis KL, Davidson M. Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc Natl Acad Sci USA 1993;90:8942–8946.PubMedCrossRefGoogle Scholar
  31. 31.
    Snyder LA, Roberts JL, Sealfon SC. Alternative transcripts of the rat and human dopamine D3 receptor. Biochem Biophys Res Commun 1991;180:1031–1035.PubMedCrossRefGoogle Scholar
  32. 32.
    Lichter JB, Barr CL, Kennedy JL, Van TH, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993;2:767–773.PubMedCrossRefGoogle Scholar
  33. 33.
    Petronis A, Macciardi F, Athanassiades A, Paterson AD, Verga M, Meltzer HY, Cola P, Buchanan JA, Van TH, Kennedy JL. Association study between the dopamine D4 receptor gene and schizophrenia. Am J Med Genet 1995;60:452–455.PubMedCrossRefGoogle Scholar
  34. 34.
    Macciardi F, Petronis A, Van TH, Marino C, Cavallini MC, Smeraldi E, Kennedy JL. Analysis of the D4 dopamine receptor gene variant in an Italian schizophrenia kindred. Arch Gen Psychiatry 1994;51:288–293.PubMedCrossRefGoogle Scholar
  35. 35.
    Macciardi F, Verga M, Kennedy JL, Petronis A, Bersani G, Pancheri P, Smeraldi E. An association study between schizophrenia and the dopamine receptor genes DRD3 and DRD4 using haplotype relative risk. Hum Heredity 1994;44:328–336.PubMedCrossRefGoogle Scholar
  36. 36.
    Barr CL, Kennedy JL, Lichter JB, Van TH, Wetterberg L, Livak KJ, Kidd KK. Alleles at the dopamine D4 receptor locus do not contribute to the genetic susceptibility to schizophrenia in a large Swedish kindred. Am J Med Genet 1993;48:218–222.PubMedCrossRefGoogle Scholar
  37. 37.
    Coon H, Byerley W, Holik J, Hoff M, Myles WM, Lannfelt L, Sokoloff P, Schwartz JC, Waldo M, Freedman R, et al. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees. Am J Hum Genet 1993;52:327–334.PubMedGoogle Scholar
  38. 38.
    Gelernter J, Pakstis AJ, Pauls DL, Kurlan R, Gancher ST, Civelli O, Grandy D, Kidd KK. Gilles de la Tourette syndrome is not linked to D2-dopamine receptor. Arch Gen Psychiatry 1990;47:1073–1077.PubMedCrossRefGoogle Scholar
  39. 39.
    Benjamin J, Li L, Patterson C, Greenberg B, Murphy D, Hamer D. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genet 1996;12:81–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Ebstein R, Novick O, Umansky R, Priel B, Osher Y, Blaine D, Bennett E, Nemanov L, Katz M, Belmaker R. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genet 1996;12:78–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 1993;33:281–307.PubMedCrossRefGoogle Scholar
  42. 42.
    Karobath M, Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci USA 1974;71:2915–2918.PubMedCrossRefGoogle Scholar
  43. 43.
    Sokoloff P, Andrieux M, Besancon R, Pilon C, Martres MP, Giros B, Schwartz JC. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 1992;225:331–337.PubMedCrossRefGoogle Scholar
  44. 44.
    Caine SB, Koob GF. Modulation of cocaine self-administration in the rat through D3 dopamine receptors. Science 1993;260:1814–1816.PubMedCrossRefGoogle Scholar
  45. 45.
    Self DW, Nestler EJ. Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 1995;18:463–495.PubMedCrossRefGoogle Scholar
  46. 46.
    Self DW, Stein L. Pertussis toxin attenuates intracranial morphine self-administration. Pharmacol Biochem Behav 1993;46:689–695.PubMedCrossRefGoogle Scholar
  47. 47.
    Steiner H, Gerfen CR. Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J Comp Neurol 1995;353:200–212.PubMedCrossRefGoogle Scholar
  48. 48.
    Agid Y, Javoy-Agid F, Ruberg M. Biochemistry of neurotransmitters in Parkinson’s Disease. Butterworth, London, 1987.Google Scholar
  49. 49.
    Reichlin S. Neuroendocrinology. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology. Saunders, Philadelphia, 1994, pp. 135–219.Google Scholar
  50. 50.
    Landwehrmeyer B, Mengod G, Palacios JM. Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 1993;5:145–153.Google Scholar
  51. 51.
    Landwehrmeyer B, Mengod G, Palacios JM. Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res 1993;18:187–192.PubMedCrossRefGoogle Scholar
  52. 52.
    Besson MJ, Graybiel AM, Nastuk MA. [3H]SCH 23390 binding to Dl dopamine receptors in the basal ganglia of the cat and primate: delineation of striosomal compartments and pallidal and nigral subdivisions. Neuroscience 1988;26:101–119.PubMedCrossRefGoogle Scholar
  53. 53.
    Gerfen CR, Engber TM, Mahan LC. Dl and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250:1429–1432.PubMedCrossRefGoogle Scholar
  54. 54.
    Meador-Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJJ. Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci Lett 1992;145:209–212.PubMedCrossRefGoogle Scholar
  55. 55.
    Joyce JN, Janowsky A, Neve KA. Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. J Pharmacol Exp Ther 1991;257:1253–1263.PubMedGoogle Scholar
  56. 56.
    Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci USA 1994;91:11271–11275.PubMedCrossRefGoogle Scholar
  57. 57.
    Diaz J, Levesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, Sokoloff P. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 1995;65:731–745.PubMedCrossRefGoogle Scholar
  58. 58.
    Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 1992;89:10178–10182.PubMedCrossRefGoogle Scholar
  59. 59.
    Meador-Woodruff JH, Grandy DK, Van TH, Damask SP, Little KY, Civelli O, Watson SJJ. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology 1994;10:239–248.PubMedGoogle Scholar
  60. 60.
    Felder CC, Blecher M, Jose PA. Dopamine-1-mediated Stimulation of phospholipase C activity in rat renal cortical membranes. J Biol Chem 1989;264:8739–8745.PubMedGoogle Scholar
  61. 61.
    O’Connell DP, Botkin SJ, Ramos SI, Sibley DR, Ariano MA, Felder RA, Carey RM. Localization of dopamine D1A receptor protein in rat kidneys. Am J Physiol 1995;268:1185–1197.Google Scholar
  62. 62.
    Jose P, Drago J, Accili D, Eisner G, Felder R. Transgenic mice to study the role of dopamine receptors in cardiovascular function. Clin Exp Hyperten 1997;19(1&2):15–25.CrossRefGoogle Scholar
  63. 63.
    Amenta F. In: Amenta F, ed. Peripheral Dopamine Receptors. CRC, Boca Raton, 1990 pp. 39–60.Google Scholar
  64. 64.
    Rivet JM, Audinot V, Gobert A, Peglion JL, Millan MJ. Modulation of mesolimbic dopamine release by the selective dopamine D3 receptor antagonist, (+)-S 14297. Eur J Pharmacol 1994;265:175–177.PubMedCrossRefGoogle Scholar
  65. 65.
    Levesque D, Martres MP, Diaz J, Griffon N, Lammers CH, Sokoloff P, Schwartz JC. A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci USA 1995;92:1719–1723.PubMedCrossRefGoogle Scholar
  66. 66.
    Seeman P and Van TH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994;15:264–270.PubMedCrossRefGoogle Scholar
  67. 67.
    Svensson K, Carlsson A, Waters N. Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm 1994;95:71–74.CrossRefGoogle Scholar
  68. 68.
    Mahan LC, Burch RM, Monsma FJ, Sibley DR. Expression of striatal Dl dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus oocytes. Proc Natl Acad Sci USA 1990;87:2196–2200.PubMedCrossRefGoogle Scholar
  69. 69.
    Malgaroli A, Vallar L, Elahi FR, Pozzan T, Spada A, Meldolesi J. Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells. Evidence of a dual mechanism of action. J Biol Chem 1987;262:13920–13927.Google Scholar
  70. 70.
    Vallar L, Vicentini LM, Meldolesi J. Inhibition of inositol phosphate production is a late, Ca2+ dependent effect of D2 dopaminergic receptor activation in rat lactotroph cells. J Biol Chem 1988;263:10127–10134.PubMedGoogle Scholar
  71. 71.
    Kanterman RY, Mahan LC, Briley EM, Monsma FJ, Sibley DR, Axelrod J, Felder CC. Transfected D2 dopamine receptors mediate the potentiation of arachidonic acid release in Chinese hamster ovary cells. Mol Pharmacol 1991;39:364–369.PubMedGoogle Scholar
  72. 72.
    Meister B, Holgert H, Aperia A, Hokfelt T. Dopamine Dl receptor mRNA in rat kidney: localization by in situ hybridization. Acta Physiol Scand 1991;143:447–449.PubMedCrossRefGoogle Scholar
  73. 73.
    Drago J, Gerfen CR, Lachowicz JE, Steiner H, Hollon TR, Love PE, Ooi GT, Grinberg A, Lee EJ, Huang SP, Bartlett PF, Jose PA, Sibley DR, Westphal H. Altered striatal function in a mutant mouse lacking DIA dopamine receptors. Proc Natl Acad Sci USA 1994;91:12564–12568.PubMedCrossRefGoogle Scholar
  74. 74.
    Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S. Dopamine Dl receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 1994;79:729–742.PubMedCrossRefGoogle Scholar
  75. 75.
    Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994;265:2037–2048.PubMedCrossRefGoogle Scholar
  76. 76.
    Gerlai R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 1996;19:177–181.PubMedCrossRefGoogle Scholar
  77. 77.
    Crawley JN. Unusual behavioral phenotypes of inbread mouse strains. Trends Neurosci 1996; 19:181,182.PubMedCrossRefGoogle Scholar
  78. 78.
    Lathe R. Mice, gene targeting and behavior: more than just genetic background. Trends Neurosci 1996;19:183–186.PubMedCrossRefGoogle Scholar
  79. 79.
    Drago J, Gerfen CR, Westphal H, Steiner H. Differential regulation of Substance P and immediate-early gene expression by cocaine in forebrain of Dl dopamine receptor-deficient mice. Neuroscience, 1996;74:813–823.PubMedCrossRefGoogle Scholar
  80. 80.
    Xu M, Hu X-T, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine Dl receptor mutant mice. Cell 1994;79:945–955.PubMedCrossRefGoogle Scholar
  81. 81.
    Miner LL, Drago J, Chamberlain PM, Donovan D, Uhl GR. Retained cocaine place preference in Dl receptor deficient mice. Neuroreport 1995;6:2314–2316.PubMedCrossRefGoogle Scholar
  82. 82.
    Baik J-H, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 1995;377:424–428.PubMedCrossRefGoogle Scholar
  83. 83.
    Nestler EJ. Hard target: understanding dopaminergic neurotransmission. Cell 1994;79:923–926.PubMedCrossRefGoogle Scholar
  84. 84.
    Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci 1995;18:527–535.PubMedCrossRefGoogle Scholar
  85. 85.
    Maricle RA, Nutt JG, Carter JH. Mood and anxiety fluctuations in Parkinson’s disease associated with levodopa infusion: Preliminary findings. Movement Disord 1995;10:329–332.PubMedCrossRefGoogle Scholar
  86. 86.
    Mohr E, Fabbrini G, Williams J. Dopamine and memory function in Parkinson’s disease. Movement Disord 1989;4:113–120.PubMedCrossRefGoogle Scholar
  87. 87.
    Riley DE, Lang AE. The spectrum of levodopa-related fluctuations in Parkinson’s disease. Neurology 1993;43:1459–1464.PubMedCrossRefGoogle Scholar
  88. 88.
    Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park B-H, Gauda EB, Lee EJ, Cool MH, Sibley DR, Gerfen CR, Westphal H, Fuchs S. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996;93:1945–1949.PubMedCrossRefGoogle Scholar
  89. 89.
    Seeman P, Ulpian C, Bergeron C, Riederer P, Jellinger K, Gabriel E, Reynolds GP, Tourtellotte WW. Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 1984;225:728–731.PubMedCrossRefGoogle Scholar
  90. 90.
    Sabate O, Campion D, d’Amato T, Martres MP, Sokoloff P, Giros B, Leboyer M, Jay M, Guedj F, Thibaut F, et al. Failure to find evidence for linkage or association between the dopamine D3 receptor gene and schizophrenia. Am J Psychiatry 1994;151:107–111.PubMedGoogle Scholar
  91. 91.
    Gelernter J, Kennedy JL, Grandy DK, Zhou QY, Civelli O, Pauls DL, Pakstis A, Kurlan R, Sunahara RK, Niznik HB, et al. Exclusion of close linkage of Tourette’s syndrome to Dl dopamine receptor. Am J Psychiatry 1993;150:449–453.PubMedGoogle Scholar
  92. 92.
    Barr CL, Kennedy JL, Pakstis AJ, Castiglione CM, Kidd JR, Wetterberg L, Kidd KK. Linkage study of a susceptibility locus for schizophrenia in the pseudoautosomal region. Schizophr Bull 1994;20:277–286.PubMedCrossRefGoogle Scholar
  93. 93.
    Shaikh S, Collier D, Arranz M, Ball D, Gill M, Kerwin R. DRD2 Ser311/Cys311 polymorphism in schizophrenia. Lancet 1994;343:1045, 1046.PubMedGoogle Scholar
  94. 94.
    Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996;379:606–612.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou QY, Quaife CJ, Palmiter RD. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 1995;374:640–643.PubMedCrossRefGoogle Scholar
  96. 96.
    Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature 1995;374:643–646.PubMedCrossRefGoogle Scholar
  97. 97.
    Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Hata T, Watanabe Y, Fujita K, Nagatsu T. Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem 1995;270:27235–27243.PubMedCrossRefGoogle Scholar
  98. 98.
    Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, Borenstein N, Dove W. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 1993;75:631–639.PubMedCrossRefGoogle Scholar
  99. 99.
    Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993;73:1155–1164.PubMedCrossRefGoogle Scholar
  100. 100.
    Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science 1995;269:1427–1429.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Domenico Accili
  • John Drago
  • Sara Fuchs

There are no affiliations available

Personalised recommendations