Advertisement

Quasi-Additive Functions and Related Topics

  • Donald H. Hyers
  • George Isac
  • Themistocles M. Rassias
Chapter
  • 246 Downloads
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 34)

Abstract

J. Tabor (1988) introduced the class of functions f: R → R which satisfy the inequality
$$\left| {f\left( {x + y} \right) - f\left( x \right) - f\left( y \right)} \right| \leqslant \varepsilon \min \left\{ {\left| {f\left( {x + y} \right)} \right|,\left| {f\left( x \right) + f\left( y \right)} \right|} \right\}$$
for all real x and y,where εis a fixed number satisfying 0 ≤ ε < 1. Later the same author (see J. Tabor (1990)) generalized the concept by considering functions f: X — Y, where XandYare real normed spaces. He called the class of functions satisfying the inequality
$$\left\| {f\left( {x + y} \right) - f\left( x \right) - f\left( y \right)} \right\| \leqslant \varepsilon \min \left\{ {\left\| {f\left( {x + y} \right)} \right\|,\left\| {f\left( x \right) + f\left( y \right)} \right\|} \right\}$$
(13.1)
for x,y in X, and for some ε∈ [0,1), quasi-additive.

Keywords

Additive Function Related Topic Normed Vector Space Real Normed Space Baire Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Donald H. Hyers
  • George Isac
    • 1
  • Themistocles M. Rassias
    • 2
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations