Skip to main content

Development of the Great Arteries

  • Chapter
Book cover Living Morphogenesis of the Heart

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

Most information about the embryology of the great arteries in the human comes from elaborate descriptions by researchers such as Congdon (1922) and Padget (1948) earlier in this century. A broader understanding of the mechanisms behind vascular development has been gained more recently from animal models other than humans. Because avian embryos such as chick and quail are used extensively in developmental cardiovascular research, some of the major differences between human and chick will be mentioned as we discuss the development of the great arteries in humans. To avoid confusion in the ensuing discussion, “aortic arch” will refer to the definitive arch whereas “aortic arch artery” refers to one of the transient pharyngeal arch arteries that are precursors of all the adult great arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakst HJ, Chaffe FH. 1928. The origin of the definitive subclavian artery in the chick embryo. Anat Rec 38:129–40.

    Article  Google Scholar 

  • Baldwin HS, Buck CA. 1994. Integrins and other cell adhesion molecules in cardiac development. Dev Biol 121:220–36.

    Google Scholar 

  • Barry A. 1951. Aortic arch derivatives in the human adult. Anat Rec 111:221–28.

    Article  PubMed  CAS  Google Scholar 

  • Beall AC, Rosenquist TH. 1990. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo. Anat Rec 226:360–36.

    Article  PubMed  CAS  Google Scholar 

  • Bockman DE, Redmond ME, Waldo K, Davis H, Kirby ML. 1987. Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat 180:332–41.

    Article  PubMed  CAS  Google Scholar 

  • Bochman DE, Redmond ME, Kirby ML. 1989. Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 225:209–17.

    Article  Google Scholar 

  • Borg JP, DeLapeyrière O, Noguchi T, Rottapel R, Dubreuil P, Birnbaum D. 1995. Biochemical characterization of two isoforms of FLT4, a VEGF receptor-related tyrosine kinase. Oncogene 10:973–84.

    PubMed  CAS  Google Scholar 

  • Bremer JL. 1912. Aorta and aortic arches in rabbits. Am J Anat 13:111–28.

    Article  Google Scholar 

  • Buell CE. 1922. Origin of the pulmonary vessels in the chick. Carnegie Inst Contr Embryol 14:11–28.

    Google Scholar 

  • Chitnis A, Henrique D, Lewis J, Ish-Horowitz D, Kintner C. 1995. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature (Land) 375:761–66.

    Article  CAS  Google Scholar 

  • Clark EB. 1995. Growth, morphogenesis, and function. The dynamics of cardiac development. In: Moller JH, Neal WA, editors Fetal, neonatal, and infant cardiac disease Norwalk, CT: Appleton & Lange. p 3–24.

    Google Scholar 

  • Coffin DJ, Poole TJ. 1998. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development (Camb) 102:735–48.

    Google Scholar 

  • Congdon ED. 1992. Transformation of the aortic-arch system during the development of the human embryo. Carnegie Inst Contr Embryol 14:47–10.

    Google Scholar 

  • Congdon ED, Wang HD. 1926. The mechanical processes concerned in the formation of the different types of aortic arches in the chick and the pig and in the divergent early development of their pulmonary arches. Am J Anat 37:499–520.

    Article  Google Scholar 

  • DeRuiter MC, Poelmann RE, Mentink MMT, Vaniperen L, Gittenberger-Groot AC. 1993 Early formation of the vascular system in quail embryos. Anat Rec 235:261–74.

    Article  Google Scholar 

  • Dieterlen-Lievre E. 1984. Emergence of intraembryonic blood stem cells in avian chimeras by means of monoclonal antibodies. Dev Comp Immunol 3: 75–80.

    Google Scholar 

  • Dohrn A. 1885. Studien zur urgeschichte des wirbelthierkorpers. VII. Entstehung and differenzierung des zungenbeins and kieferapparates der selachier. Mitt Zool Stat Neapel 6:1–48.

    Google Scholar 

  • Emmanouilides GC, Baylen BG. 1983. Pulmonary stenosis. In: Adams FH, and Emmanouilides GC, editors. Moss heart disease in infants, children, and adolescents. 3rd ed. Baltimore, MD: Williams & Wilkins. p 234–62.

    Google Scholar 

  • Evans HM. 1909. On the development of the aortae, cardinal and umbilical veins and other blood vessels of vertebrate embryos from capillaries. Anat Rec 3:498–518.

    Article  Google Scholar 

  • Fedorow V. 1910. Uber die entwickelung der lungenvene. Anat Hefte. 1 bd 40:529–607.

    Article  Google Scholar 

  • Folkman J. 1985. Toward an understanding of angiogenesis: search and discovery. In: Garber, Edward D., editor, Perspectives in biology and medicine. 29th ed. Chicago, IL: University of Chicago Press. p 10–36.

    Google Scholar 

  • Fong GH, Rossant J, et al. 1995. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature (Lond) 376:66–70.

    Article  CAS  Google Scholar 

  • Freedom RM. 1983. Hypoplastic left heart syndrome. In: Adams FH, Emmanouilides GC, editors. Moss’ heart disease in infants, children, and adolescents. 3rd ed. Baltimore, MD: Williams & Wilkins. p 411–22.

    Google Scholar 

  • Friedman WF, and Benson LN. 1983. Aortic stenosis. In: Adams FH, Emmanouilides GC, editors. Moss’ heart disease in infants, children, and adolescents. 3rd ed. Baltimore, MD: Williams & Wilkins. p 171–88.

    Google Scholar 

  • Gersony WM. 1983. Coarctation of the aorta. In: Adams FH, Emmanouilides GC, editors. Moss’ heart disease in infants, children, and adolescents. 3rd ed. Baltimore: Williams & Wilkins. p 188–99.

    Google Scholar 

  • Getty R. 1975. Sisson and Grossman’s The Anatomy of the Domestic Animals. Philadelphia: W.B. Saunders.

    Google Scholar 

  • Gray H. 1973. Anatomy of the Human Body. 29th ed. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Heymann MA. 1983. Patent ductus arteriosus. In: Adams FH, Emmanouilides GC, editor. MD Heart disease in infants, children, and adolescents. 3rd ed. Baltimore, MD: Williams & Wilkins. 158–71.

    Google Scholar 

  • Hiss W. 1900. Lecithoblat un angioblast: Abhandelr math phys KK sachs gessellschaft wissenchaft. Abhandl. Math.-Phys. KI. K. sachs Ges. 25:171–328.

    Google Scholar 

  • Horstadius, S. (1950) The Neural Crest. Its Properties and Derivatives in the Light of Experimental Research. London: Oxford University Press.

    Google Scholar 

  • Hughes, A.F.W. (1934) On the development of the blood vessels in the head of the chick. Phil. Trans. R. Soc. Lon: B Biol Sci 224:75–129.

    Article  Google Scholar 

  • Hughes, A.F.W. (1943) The histogenesis of the arteries of the chick embryo. J. Anat. 77:266–287.

    PubMed  CAS  Google Scholar 

  • Hunt, P., Whiting, J., Muchamore, I., Marshall, H. and Krumlauf, R. (1991) Homeobox genes and models for patterning the hindbrain and branchial arches. Development (Camb) 112 (Suppl. 1):187–196.

    Google Scholar 

  • Jakeman, L.B., Armanini, M., Phillips, H.S. and Ferrara, N. (1993) Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology 133:848–59.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M.C., Payne, R.M., Grant, J.W. and Strauss, A.W. (1995) The genetic basis of paediatric heart disease. Ann Med. 27:289–300.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, M.C. (1966) A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat. Rec. 156:143–156.

    Article  PubMed  CAS  Google Scholar 

  • Kastschenko, N. (1887) Das schlundspaltgebiet des huhnchens. Arch. Anat. Physiol. Anat. Abst. 258–300.

    Google Scholar 

  • Kirby, M.L., Gale, T.F. and Stewart, D.E. (1983) Neural crest cells contribute to aorticopulmonary septation. Science 220:1059–1061.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M.L., Turnage, K.L. and Hays, B.M. (1985) Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat. Rec. 213:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, M.L., Hunt, P. and Thorogood, P. (1997) Normal development of the cardiac outflow tract is not dependent on normal patterning of the aortic arch arteries. Dcv. Dyn. 208:34–47.

    Article  CAS  Google Scholar 

  • Kirby ML, Waldo KL. 1995. Neural crest and cardiovascular patterning. Circ Res 77:211–5.

    Article  PubMed  CAS  Google Scholar 

  • Kuratani SC, Kirby ML. 1991. Initial migration and distribution of the cardiac neural crest in the avian embryo: an introduction to the concept of the circumpharyngeal crest. Am. J. Anat. 191:215–27.

    Article  PubMed  CAS  Google Scholar 

  • Kutsche LM, Van Mierop LHS. 1987. Anatomy and pathogenesis of aorticopulmonary septal defect. Am. J. Cardiol. 59:443–7.

    Article  PubMed  CAS  Google Scholar 

  • Kutsche LM, Van Mierop LHS. 1988. Anomalous origin of a pulmonary artery from the ascending aorta: associated anomalies and pathogenesis. Am. J. Cardiol. 61 (10):850–856.

    Article  PubMed  CAS  Google Scholar 

  • Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA. 1995. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell ad-hesion molecule (VCAM-1) deficient mice. Development (Camb) 121:489–503.

    CAS  Google Scholar 

  • Langman J. 1975. Medical Embryology. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Le Douarin N. 1982. The Neural Crest. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lehman, H. 1905. On the embryonic history of the aortic arches in mammals. Anat. Anz. 26:406–424.

    Google Scholar 

  • Le Lièvre CS, Le Douarin NM. 1975. Mesenchymal derivatives of the neural crest. Analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34:125–54.

    PubMed  Google Scholar 

  • Lillie FR. 1952. Development of the Chick. New York: H. Half & Co.

    Google Scholar 

  • Locy WA. 1995. The fifth and sixth aortic arches in chick embryo, with comments on the conditions of the same vessels in other vertebrates. Anat. Anz. 29:287–300.

    Google Scholar 

  • Loring JF, Erickson CA. 1987. Neural crest cell migratory pathways in the trunk of the chick embryo. Dev. Biol. 121:220–36.

    Article  PubMed  CAS  Google Scholar 

  • McVay C. 1984. Anson & McVay Surgical Anatomy. Philadelphia: W.B. Saunders.

    Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Moller NPH, Risau W, Ullrich A. 1993. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–46.

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa-Tomita S, Waldo K, Tomita H, Kirby ML. 1991. Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras. Am. J. Anat. 192, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Moes CAF, Freedom RM. 1992. Rings, slings, and other things: vascular structures contributing to a neonatal “noose”. In: Freedom RM, Benson LN, Smallhorn JF, editors. Neonatal heart disease. London: Springer-Verlag. p 731–49.

    Chapter  Google Scholar 

  • Morrow WR, Huhta JC. 1990. Aortic arch and pulmonary artery anomalies. In: Garson A, Bicker JT, McNamara DG, editors. The science and practice of pediatric cardiology. Philadelphia: Lea & Febiger. p 1421–52.

    Google Scholar 

  • Murphy M, Reid K, et al. 1994. FGF2 regulates proliferation of neural crest cells, with subsequent neuronal differentiation regulated by LIF or related factors. Development (Camb) 120: 3519–28.

    CAS  Google Scholar 

  • Netter FH. 1978. Embryology. In: Yonkman, Frederick E, editor, Heart, New York: CIBA p 111–30.

    Google Scholar 

  • Nicosia RI; Nicosia SV, Smith M. 1994. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145: 1023–9.

    PubMed  CAS  Google Scholar 

  • Nishibatake M, Kirby ML, van Mierop LH. 1987. Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation. 75: 255–64.

    Article  PubMed  CAS  Google Scholar 

  • Noden DM. 1978. The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 67: 296–312.

    Article  PubMed  CAS  Google Scholar 

  • Noden DM. 1987. Interactions between cephalic neural crest and mesodermal populations. In: Maderson, Paul, editor, Developmental and evolutionary aspects of the neural crest. New York: John Wiley & Sons. p 88–119.

    Google Scholar 

  • Noden DM. 1988. Interactions and fates of avian craniofacial mesenchyme. Development (Camb) 103 (Suppl):121–40.

    Google Scholar 

  • Noden DM. 1991. Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11: 192–213.

    PubMed  CAS  Google Scholar 

  • Padget DH. 1948. Development of cranial arteries in human embryo. Contrib Embryol Carnegie Inst Wash 207: 205–12.

    Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA. 1987. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development (Camb) 100: 339–49.

    CAS  Google Scholar 

  • Pardanaud L, Yassine F, Dieterlen-Lievre F. 1989. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development (Camb) 105: 473–485.

    CAS  Google Scholar 

  • Pexieder T. 1969. Some quantitative aspects on the development of aortic arches in chick embryos between the 2nd and 8th day of incubation. Praha, Folia Morphol 17:273–90.

    CAS  Google Scholar 

  • Phillips MTI, Waldo KL, Kirby ML. 1988. Neural crest ablation does not alter pulmonary vein development in the chick embryo. Anat Rec 223:292–98.

    Article  Google Scholar 

  • Reagan FP. 1915. Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac entoderm. Anat Rec 9:329–41.

    Article  Google Scholar 

  • Risau W, Lemmon V. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–50.

    Article  PubMed  CAS  Google Scholar 

  • Romanoff AL. 1960. The Avian Embryo: Structural and Functional Development. New York: Macmillan.

    Google Scholar 

  • Romer AS. 1963. The Vertebrate Body. Philadelphia: W.B. Saunders.

    Google Scholar 

  • Rosenquist GC. 1970. Location and movements of cardiogenic cells in the chick embryo: the heart-forming portion of the primitive streak. Dev Biol 22:461–75.

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist TH, McCoy JR, Waldo KL, Kirby ML. 1988. Origin and propagation of elastogenesis in the developing cardiovascular system. Anat Rec 221:860–71.

    Article  PubMed  CAS  Google Scholar 

  • Rychter Z. 1962. Experimental morphology of the aortic arches and the heart loop in chick embryos. Adv Morphog 2:333–71.

    Google Scholar 

  • Sabin CG. 1905. The origin of the subclavian artery in the chick. Anat Anz 26:317–32.

    Google Scholar 

  • Sabin FR. 1917. Origin and development of the primitive vessels of the chick and of the pig. Contrib Embryol Carnegie Inst Wash 6:63–124.

    Google Scholar 

  • Sabin FR. 1920. Studies on the origin of the blood vessels and of red blood corpuscles as seen in the living blastoderm of chick during the second day of incubation. Carnegie Contrib Embryol 9:215–62.

    Google Scholar 

  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. 1995. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature (Land) 376:70–74.

    Article  CAS  Google Scholar 

  • Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN. 1995. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 121:1089–98.

    PubMed  CAS  Google Scholar 

  • Seetharam L, Gotoh N, Mans Y, Neufeld G, Yamaguchi S, Shibuya M. 1995. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGE Oncogene 10:135–47.

    CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML, Schuh AC. 1995. Failure of blood-island formation and vasculogenesis in Flk-1- deficient mice. Nature 376:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Sissman NJ. 1983. Anomalies of the aortic arch complex. In: Adams FH, Emmanouilides GC, editors. Moss’ heart disease in infants, children, and adolescents. 3rd cd. Baltimore, MD: Williams & Wilkins. p 199–215.

    Google Scholar 

  • Skandalakis JE, Gray SW, Symbas P. 1994. The thoracic and abdominal aorta. In: Skandalakis JE, Editor. Embryology for surgeons. 2nd ed. Baltimore, MD: Williams & Wilkins. p 976–1030.

    Google Scholar 

  • Skidmore FD. 1975. Development of the right outflow tract and pulmonary arterial supply. Ann. R. Coll. Surg. Engl. 57:186–97.

    PubMed  CAS  Google Scholar 

  • Stewart JR, Kincaid OW, Edwards JE, editors. 1964. An Atlas of Vascular Rings and Related Malformations of the Aortic Arch System. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Van Mierop LHS. 1979a. Morphological development of the heart. In: Berne RM, Sperelakis N, Geiger SR, editors. The cardiovascular system. Baltimore, MD: Waverly Press. p 1–28.

    Google Scholar 

  • Van Mierop LHS. 1979b. Embryology of the univentricular heart. Herz 4:78–85.

    Google Scholar 

  • Vincent M, Duband J-L, Thirey J-P. 1983. A cell surface determinant expressed early on migrating avian neural crest cells. Dey. Brain. Res. 9:235–8.

    Article  Google Scholar 

  • Vlodaysky I, Fridman R, et al. 1987. Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J. Cell. Physiol 131:402–6.

    Article  Google Scholar 

  • Waldo KL, Kumiski D, Kirby ML. 1996. Cardiac neural crest is essential for the persistence rather than the formation of an arch artery. Dey. Dyn. 205:281–292.

    Article  CAS  Google Scholar 

  • Waldo KL, Kirby ML. 1993a. Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat. Rec. 237:385–99.

    Article  CAS  Google Scholar 

  • Waldo KL, Kirby ML. 1993b. Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat Rec 237:385–99.

    Article  CAS  Google Scholar 

  • Weinberg PM. 1995. Aortic arch anomalies. In: Emmanouilides GC, Riemenschneider TA, Allen HD, Gutgesell HP, editors. Moss and Adams heart disease in infants, children, and adolescents including the fetus and young adult. 5th ed. Baltimore, MD: Williams & Wilkins. p 810–37.

    Google Scholar 

  • Weston, JA. 1970. The migration and differentiation of neural crest cells. Adv. Morphog 8:41–117.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waldo, K., Kirby, M.L. (1998). Development of the Great Arteries. In: de la Cruz, M.V., Markwald, R.R. (eds) Living Morphogenesis of the Heart. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1788-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1788-6_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7283-0

  • Online ISBN: 978-1-4612-1788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics