Skip to main content

Embryological Development of the Ventricular Inlets. Septation and Atrioventricular Valve Apparatus

  • Chapter

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

A ventricular inlet is characterized anatomically by the presence of an atrioventricular valve apparatus, the tricuspid on the right side and the mitral on the left side. The atrial limit of the right ventricular inlet is the tricuspid valve ring and that of the left ventricular inlet is the mitral valve ring. The limit of the inlets of both ventricles with their apical trabeculated region correspond with the base of the papillary muscles. Furthermore, in the left ventricle one more anatomical reference is the limit between its smooth region (inlet) and its apical trabeculated region (chapter X).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RH, Becker AE, VanMierop LHS. 1997. What should we call the crista? Br Heart J 39:856–9.

    Article  Google Scholar 

  • Argüello C, Servín M, Arciniegas E, Valenzuela B. 1988. Fusion mechanisms of endocardial atrioventricular cushions. In: Quero-Jiménez M, Arteaga M, editors. Pediatric cardiology. Atrioventricular septal defect. Madrid: Doyma. p 64–75.

    Google Scholar 

  • Basson TT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault b, Kucherlapati R, Seidman JG, Seidman CE. 1997. Mutation in human cause limb and cardiac malformation in Holt-Gram syndrome. Nat Genet 15:30–5.

    Article  PubMed  CAS  Google Scholar 

  • Cayré R, Valencia-Mayoral P, Coffe-Ramírez V, Sánchez Gómez C, Angelini P, De la Cruz MV. 1993. The right atrioventricular valvular apparatus in the chick heart. Acta Anat 148:27–33.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Castillo MM, Villavicencio L, Valencia A, Moreno-Rodriguez RA. 1997. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo heart. Anat Rec 247:512–20.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Cayré R, Arista-Salado O, Sadowinski S, Serrano A. 1992. The infundibular interrelationships and the ventriculoarterial connection in doublet outlet right ventricle. Clinical and surgical implications. Int J Cardiol 35:153–64.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Giménez-Ribotta M, Saravalli O, Cayré R. 1983. The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Muñoz-Armas S, Muñoz-Castellanos L. 1972. Development of the Chick Heart. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • de la Cruz MV, Quero-Jiménez M, Arteaga M, Cayré R. 1982. Morphogénèse du septum interventriculaire. Coeur 13:443–8.

    Google Scholar 

  • de la Cruz MV, Sánchez-Gómez C, Cayré R. 1991. The developmental components of the ventricles: their significance in congenital cardiac malformations. Cardiol Young 1:123–8.

    Google Scholar 

  • de la Cruz MV, Sánchez-Gómez C, Palomino MA. 1989. The primitive cardiac regions in the straight tube heart (Stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–31.

    Google Scholar 

  • de la Cruz MV, Sánchez-Gómez C, Robledo Tovi JL. 1987. Experimental study of the development of the ventricular inlets in the chick embryo. Embryologische Hefte. 1:25–37.

    Google Scholar 

  • DeVries PA, Saunders JB. 1962. Development of the ventricles and spiral outflow tract in the human heart. A contribution of the development of the human heart from age group IX to age group XV. Carnegie Contrib Embryol 256:89–114.

    Google Scholar 

  • Eisenberg LM, Markwald RR. 1995. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Fallon JF, Lopez A, et al. 1994. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science (Wash DC) 264:104–7.

    Article  CAS  Google Scholar 

  • García-Peláez I, Díaz-Góngora G, Arteaga-Martínez M. 1984 Contribution of the superior atrioventricular cushion to the left ventricular infundibulum. Experimental study on the chick embryo. Acta Anat 118:224–30.

    Article  PubMed  Google Scholar 

  • Icardo JM. 1989a. Changes in endocardial cell morphology during development of the endocardial cushions. Anat Embryol 179:443–8.

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM. 1989b. Endocardial cell arrangement: role of hemodynamics. Anat Rec 225:150–5.

    Article  PubMed  CAS  Google Scholar 

  • Kavlock RJ, Daston GP. 1997. Drug Toxicity in Embryonic Development. I. Advances in Understanding Mechanisms of Birth Defects, Handbook of Experimental Pharmacology, Vol 124/1, Berlin: Springer. (see chapter 2, p 11–40; chapter 3, p 41–76)

    Book  Google Scholar 

  • Kinsella MK, Fitzharris TP. 1980. Origin of cushion tissue in the developing chick heart: cinematographic recordings of in situ formation. Science (Wash DC) 207:1359–1360.

    CAS  Google Scholar 

  • Kramer TC. 1942. The partitioning of the truncus and conus and the formation of the membranous portion of the interventricular septum in the human heart. Am J Anat 71:343–70.

    Article  Google Scholar 

  • Lam JHC, Ranganathan N, Wigle DE, Silver MD. 1970. Morphology of the human mitral valve. I. Chordae tendinae: a new classification. Circulation 41:449–58.

    Article  PubMed  CAS  Google Scholar 

  • Lamers WH, Wessels A, Verbeek FJ, Moorman AFM, Virágh S, Wenink ACG, Gittenberger-de Groot AC, Anderson RH. 1992. New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation 86:1194–205.

    Article  PubMed  CAS  Google Scholar 

  • Magovern JH, Moore GW, Hutchins GM. 1986. Development of the atrioventricular valve region in the human embryo. Anat Rec 215:167–81.

    Article  PubMed  CAS  Google Scholar 

  • Markwald, RR, Fitzharris TP, Adams Smith WN. 1975. Structural analysis of endocardial cytodifferentiation. Dev Biol 42:160–80.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ. 1977. Structural development of endocardial cushions. Am J Anat 148:85–120.

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA. 1991. The defect in Marfan syndrome. Nature 352:279–81.

    Article  Google Scholar 

  • Netter FH, Van Mierop LHS. 1969. Embryology. In: Netter FH, editor. CIBA Collection of Medical Illustrations. Ardsley, New Jersey: CIBA Pharmaceutical Co. Vol. 5, p 119–25.

    Google Scholar 

  • Ranganathan N, Lam JHC, Wigle DE, Silver MD. 1970. Morphology of the human mitral valve. II. The valve leaflets. Circulation 41:459–67.

    Article  PubMed  CAS  Google Scholar 

  • Romanoff AR. 1960. The Avian Embryo. New York: MacMillan. p 680–780.

    Google Scholar 

  • Rongish BJ, Little CD. 1995. Extracellular matrix in heart development. Experentia 51:873–82.

    Article  Google Scholar 

  • Silver MD, Lam JHC, Ranganathan N, Wigle ED. 1971. Morphology of the human tricuspid valve. Circulation 43:333–48.

    Article  PubMed  CAS  Google Scholar 

  • Sissman NJ. 1970. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol 25:141–8.

    Article  PubMed  CAS  Google Scholar 

  • Streeter GL. 1942. Development horizons in human embryos. Description of age group XI, 13 to 20 somites and age group XII, 21 to 29 somites. Carnegie Contrib Embryol 30:211–45.

    Google Scholar 

  • Streeter GL. 1945. Development horizons in human embryos. Description of age group XIII, embryos about 4 or 5 millimeters long and age group XIV, period of indentation of the lens vesicle. Carnegie Contrib Embryol 31:27–63.

    Google Scholar 

  • Streeter GL. 1948. Development horizons in human embryos. Description of age group XV, XVI, XVII, and XVIII, being the third issue of the Carnegie Collection. Carnegie Contrib Embryol 32:133–203.

    Google Scholar 

  • Szebenyi G, Savage MP, Olwin BB, Fallon JF. 1995. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev Dyn 204:446–56.

    Article  PubMed  CAS  Google Scholar 

  • Van Mierop LHS, Alley RD, Kausel HW, Stranahan A. 1962. The anatomy and embryology of endocardial cushion defects. J Thorac Cardiovasc Surg 43:71–83.

    Google Scholar 

  • Van Mierop LHS, Kutsche LM. 1985. Development of the ventricular septum of the heart. Heart Vessels 1:114–9.

    Article  PubMed  Google Scholar 

  • Wang Y, Sassoon D. 1995. Ectoderm—mesenchyme and mesenchyme—mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb. Dev Biol 168:374–82.

    Article  PubMed  CAS  Google Scholar 

  • Wenink ACG. 1992. Quantitative morphology of the embryonic heart: an approach to development of the atrioventricular valves. Anat Rec 234:129–35.

    Article  PubMed  CAS  Google Scholar 

  • Wenink ACG. 1987. Embryology of the heart. In: Anderson RH, Macartney FJ, Shine-bourne EA, Tynan M, editors. Pediatric cardiology. Edinburgh: Churchill Livingstone. p 83–107.

    Google Scholar 

  • Wenink ACG, Gittenberger-de Groot AC. 1985. The role of atrioventricular endocardial cushions in the septation of the heart. Int J Cardiol 8:25–44.

    Article  PubMed  CAS  Google Scholar 

  • Wenink ACG, Gittenberger-de Groot AC. 1986. Embryology of the mitral valve. Int J Cardiol 11:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Wessels A, Markman MWM, Vermeulen JLM, Anderson RH, Viragh St, Mooman AFM, Lamers WH. 1996. The development of the atrioventricular junction in the human heart: an immunohistochemical study. Circ Res 78:110–7.

    Article  PubMed  CAS  Google Scholar 

  • Wunsch A, Markwald RR, Little CD. 1994. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3 antigen, a fibrillinlike protein of the endocardial cushion tissue. Dev Biol 165:585–601.

    Article  PubMed  CAS  Google Scholar 

  • Ya J, Schilham MW, de Beer PAJ, Tesink-Taekema S, France D, Moorman AFM, Lamers WH. 1997. Sox-4-deficient mice provide an animal model for the development of common trunk. (submitted).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

de la Cruz, M.V., Markwald, R.R. (1998). Embryological Development of the Ventricular Inlets. Septation and Atrioventricular Valve Apparatus. In: de la Cruz, M.V., Markwald, R.R. (eds) Living Morphogenesis of the Heart. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1788-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1788-6_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7283-0

  • Online ISBN: 978-1-4612-1788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics