Skip to main content

Embryological Development of the Apical Trabeculated Region of Both Ventricles. The Contribution of the Primitive Interventricular Septum in the Ventricular Septation

  • Chapter

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The apical trabeculated region of the anatomical right ventricle has two boundaries, one with its inlet and the other with its outlet, which correspond to the base of the papillary muscles and to the proximal or free border of the supraventricular crest, respectively. The apical trabeculated region of the anatomical left ventricle also has two limits, one with its inlet and the other with its outlet, which are the base of the papillary muscles and a tangential plane at the free border of the free portion of the anteroseptal leaflet of the mitral valve (mitroaortic continuity), respectively (chapter X).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernanke DH, Markwald RR. 1982. Migratory behavior of cardiac cushion tissue cells in collagen lattice culture system. Dev Biol 91:235–45.

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz MV. 1979. Different concepts of univentricular heart. Experimental embryological approach. Herz 4:67–72.

    PubMed  Google Scholar 

  • de la Cruz MV, Castillo MM, Villavicencio L, Valencia A, Moreno-Rodriguez RA. 1997. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo heart. Anat Rec 247:512–20.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Giménez-Ribotta M, Saravalli O, Cayré R. 1983. The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Quero-Jiménez M, Arteaga M, Cayré R. 1982. Morphogénèse du septum interventriculaire. Coeur 13:443–8.

    Google Scholar 

  • de la Cruz MV, Sánchez-Gómez C, Cayré R. 1991. The developmental components of the ventricles: their significance in congenital cardiac malformations. Cardiol Young 1:123–8.

    Google Scholar 

  • de la Cruz MV, Sánchez-Gómez C, Palomino MA. 1989. The primitive cardiac regions in the straight tube heart (Stage 9-)and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–31.

    Google Scholar 

  • DeVries PA, Saunders JB. 1962. Development of the ventricles and spiral outflow tract in the human heart. A contribution of the development of the human heart from age group IX to age group XV. Carnegie Contrib Embryol 256:89–114.

    Google Scholar 

  • Flank M. 1909. The heart. In Hill LE, editor. Further advances in physiology. Longmans Green. New York: p 34–71.

    Google Scholar 

  • Frazer JE. 1932. Development of the heart, and vessels of the anterior part of the embryo. In Manual of Embryology. New York: William Wood and Co. p 306–26.

    Google Scholar 

  • García-Peláez I, Díaz-Góngora G, Arteaga M. 1984. Contribution of the superior atrioventricular cushion to the left ventricular infundibulum. Experimental study on the chick embryo. Acta Anat 118:224–30.

    Article  PubMed  Google Scholar 

  • Gittenberger-de Groot A, Bartclings MM, Polemann RE. 1994. Overview: cardiac morpho-genesis. In Clark EB, Markwald RR, Takao A, editors. Developmental mechanisms of heart disease. Armonk, NY: Futura Publishing Co Inc. p 157–68.

    Google Scholar 

  • Grant RP. 1962. The embryology of ventricular flow pathways in man. Circulation 25:756–79.

    Article  PubMed  CAS  Google Scholar 

  • Harh JY, Paul MH. 1975. Experimental cardiac morphogenesis. I. Development of the ventricular septum in the chick. J Embryol Exp Morphol 33:13–28.

    PubMed  CAS  Google Scholar 

  • Isokawa K, Rezaee M, Wunsch A, Markwald RR, Krug EL. 1994. Identification of transfer-rin as one of multiple EDTA-extractable extracellular proteins in early chick heart inductive interactions. J Cell Biochem 54:207–18.

    Article  PubMed  CAS  Google Scholar 

  • Krug EL, Mjaatvedt CH, Markwald RR. 1987. Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Dev Biol 120:348–55.

    Article  PubMed  CAS  Google Scholar 

  • Krug EL, Runyan RB, Markwald RR. 1985. Protein extracts from early embryonic hearts initiate cardiac endothelial differentiation. Deb Biol 112:414–26.

    Article  CAS  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ. 1977. Structural development of endocardial cushions. Am J Anat 148:85–120.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Lepera RC. 1987. The temporal and site restricted expression of cell adhesion and substrate associated molecules during endothelial transformation to mesenchyme in the embryonic chick heart. Anat Rec 218:87A.

    Google Scholar 

  • Markwald RR, Mjaatvedt CH, Krug EL. 1990a. Induction of endocardial cushion tissue formation by adheron-like molecular complexes derived from the myocardial basement membrane. In Clark EB, Takao A, editors. Developmental cardiology: morphogenesis and function. Mount Kisco, NY. Futura Publishing Co Inc. p 191–204.

    Google Scholar 

  • Markwald RR, Mjaatvedt CH, Krug El, Sinning AR. 1990b. Inductive interactions in heart development: role of cardiac adherons in cushion tissue formation. Ann N Y Acad Sci 558:13–25.

    Article  Google Scholar 

  • McGuire PG, Orkin RW. 1992. Urokinase activity in the developing avian heart: a spatial and temporal analysis. Dev Dyn 193:24–33.

    Article  Google Scholar 

  • Mjaatvedt CH, Krug EL, Markwald RR. 1991. An antiserum (ES1) against a particulate form of extracellular matrix blocks the transformation of cardiac endothelium into mesenchyme in culture. Dev Biol 145:219–30.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Markwald RR. 1989. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol 136:118–28.

    Article  PubMed  CAS  Google Scholar 

  • Netter FH, Van Mierop LHS. 1969. Embryology. In Netter FH, editor. CIBA Collection of Medical Illustrations. Ardsley, New Jersey. CIBA Pharmaceutical Co. Vol. 5, p. 119–25.

    Google Scholar 

  • Rezaee M, Isokawa K, Halligan N, Markwald RR, Krug EL. 1993. Identification of an extracellular 130-kDa protein involved in early cardiac morphogenesis. J Biol Chem 268:14404–11.

    PubMed  CAS  Google Scholar 

  • Runyan RB, Markwald RR. 1983. Invasion of mesenchyme into three-dimensional gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–14.

    Article  PubMed  CAS  Google Scholar 

  • Sinning AR, Lepera RC, Markwald RR. 1988. Initial expression of type I procollagen in chick cardiac mesenchyme is dependent upon myocardial stimulation. Dev Biol 130:167–74.

    Article  PubMed  CAS  Google Scholar 

  • Sissman NJ. 1966. Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature (Lond) 210:154–7.

    Article  Google Scholar 

  • Streeter GL. 1948. Development horizons in human embryos. Description of age group XV, XVI, XVII, and XVIII, being the third issue of the Carnegie Collection. Carnegie Contrib Embryol 32:133–203.

    Google Scholar 

  • Van Mierop LHS, Alley RD, Kausel HW, Stranahan A. 1962. The anatomy and embryology of endocardial cushion defects. J Thorac Cardiovasc Surg 43:71–83.

    Google Scholar 

  • Van Mierop LHS, Kutsche LM. 1985. Development of the ventricular septum of the heart. Heart Vessels 1:114–9.

    Article  PubMed  Google Scholar 

  • Wenink ACG. 1992. Quantitative morphology of the embryonic heart: an approach to development of the atrioventricular valves. Anat Rec 234:129–35.

    Article  PubMed  CAS  Google Scholar 

  • Wenink ACG, Gittenberger-de Groot AC. 1985. The role of atrioventricular endocardial cushions in the septation of the heart. Int J Cardiol 8:25–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

de la Cruz, M.V., Moreno-Rodriguez, R. (1998). Embryological Development of the Apical Trabeculated Region of Both Ventricles. The Contribution of the Primitive Interventricular Septum in the Ventricular Septation. In: de la Cruz, M.V., Markwald, R.R. (eds) Living Morphogenesis of the Heart. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1788-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1788-6_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7283-0

  • Online ISBN: 978-1-4612-1788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics