Skip to main content

Formation and Septation of the Tubular Heart: Integrating the Dynamics of Morphology With Emerging Molecular Concepts

  • Chapter
Book cover Living Morphogenesis of the Heart

Abstract

In the present chapter, we seek to integrate the progressive and dynamic changes in structure that transform a bent, hollow tube into a mature, fully defined, four-chambered heart with emerging concepts of molecular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RH. 1989. The present-day place of correlations between embryology and anatomy in the understanding of congenitally malformed hearts. In: Aranega A, Pexieder T, editors. Correlations between experimental cardiac embryology and teratology and congenital cardiac defects. University of Granada Press. p 265–95.

    Google Scholar 

  • Anderson RH, Webb S, Brown NA. 1996. Establishing the anatomic hallmarks of congenitally malformed hearts. Trends Cardiovasc Med 6:10–5.

    Article  PubMed  CAS  Google Scholar 

  • Alexander SM, Jackson KJ, Bushnell KM, McGuire PG. 1997. Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn 209:261–8.

    Article  PubMed  CAS  Google Scholar 

  • Arguello C, De La Cruz MV, Sanchez C. 1978. Ultrastructural and experimental evidence of myocardial cell differentiation into connective tissue cells in embryonic chick heart. J Mol Cell Cardiol 10:307–15.

    Article  PubMed  CAS  Google Scholar 

  • Asami I, Koizumi K. 1995. Development of the atrial septal complex in the human heart: contribution of the spina vestibuli. In: Clark EB, Markwald RR, Takao A, editors. Developmental mechanisms of heart disease. Armonk, NY: Futura Publishing Company. p 255–60.

    Google Scholar 

  • Barton PJR, Boheler KR, Brand NJ, Thomas PJ. 1995. Molecular biology of cardiac development and growth Austin TX: Landes Co. Chapter 2; p 56.

    Google Scholar 

  • Bergwerff M, Verberne MEM, DeRuiter MC, Poelman RE, Gittenberger-de Groot. 1997. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology. Cire Res (in press).

    Google Scholar 

  • Bernanke DH, Markwald RR. 1982. Migratory behavior of cardiac cushion tissue cells in a collagen lattice culture system. Dev Biol 91:235–45.

    Article  PubMed  CAS  Google Scholar 

  • Bouchey D, Argraves WS, Little CD. 1996. Fibulin-1, vitronectin and fibronectin in valvuloseptal development. Anat Rec 244:540–51.

    Article  PubMed  CAS  Google Scholar 

  • Bouman HGA, Broekhuizen MLA, Baasten MJ, Gittenberger-de Groot, AC, Wenink ACG. 1995. A spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec 243:101–8.

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim T, Sasai Y, Lu B, De Robertis EM. 1996. Cerbrus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature (Land) 382:595–601.

    Article  CAS  Google Scholar 

  • Brown CG, Boyer AS, Runyan RB, Barnett JV. 1996. Antibodies to the type II TGF beta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Dev Biol 174:248–57.

    Article  PubMed  CAS  Google Scholar 

  • Brueckner MD, Horwich AL. 1989. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci USA 86:5035–39.

    Article  PubMed  CAS  Google Scholar 

  • Candia A-F, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH, Wright CVE. 1992. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development (Camb) 116:1123–36.

    PubMed  CAS  Google Scholar 

  • Capehart AA, Weinecke MM, Kitten GT, Solursh M, EL, Krug EL. 1997. Production of a monoclonal antibody by in vitro immunization that recognizes a native chondroitin sulfate epitope in the embryonic chick limb and heart. J Histochem Cytochem.

    Google Scholar 

  • Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli S, Cancedda R. 1997. Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization. J Cell Biol 136:1375–84.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Thomas P, Thompson RP, Robert B, Yacoub MH, Barton PJ. 1993. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dyn 197:203–16.

    Article  CAS  Google Scholar 

  • Coffin JD, Poole TJ. 1991. Endothelial cell origin and migration in embryonic heart and cranial blood vessel development. Anat Rec 231:383–95.

    Article  PubMed  CAS  Google Scholar 

  • Crossin KL, Hoffman S. 1991. Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Dev Biol 145:277–86.

    Article  PubMed  CAS  Google Scholar 

  • Davis CL. 1924. The cardiac jelly of the chick embryo. Anat Rec 27:201–2.

    Google Scholar 

  • de la Cruz MV, Sanchez-Gomez C, Arteaga MM, Arguello C. 1977. Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123: 661–86.

    PubMed  Google Scholar 

  • de la Cruz MV, Robota GM, Saravalli O, Cayre R. 1983. The contribution of the inferior cushion of the atrioventricular valves: study in the chick embryo. Am J Anat 166:63–72.

    Article  PubMed  Google Scholar 

  • de la Cruz MV, Sanchez-Gomez C, Palomino MA. 1989. The primitive cardiac regions in the straight tube heart (stage 91 and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat 165:121–31.

    Google Scholar 

  • de la Cruz MV, Castillo MM, Villavicencio L, Valencia GA, Moreno-Rodriguez RA. 1997. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo. Anat Rec 247: 512–20.

    Article  PubMed  Google Scholar 

  • DeRuiter MC, Gittenberger-deGroot AC, Wenink ACG, Mentink MMT. 1995. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec 243:84–92.

    Article  PubMed  CAS  Google Scholar 

  • DeRuiter MC, Poelmann RF, VanMunsteren JC, Mironov V, Markwald R, Gittenberger-de Groot. 1997. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–51.

    Article  PubMed  CAS  Google Scholar 

  • Drake CJ, Little CD. 1995. Exogenous VEGF induces malformed and hyperfused vessels. Proc Natl Acad Sci USA 92:7657–61.

    Article  CAS  Google Scholar 

  • Eisenberg LM, Markwald RR. 1995. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Epstein DJ, Vekemans M, Gros P. 1991. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67:767–74.

    Article  PubMed  CAS  Google Scholar 

  • Evans SM, O’Brien TX. 1993. Expression of the helix-loop-helix factor ID during mouse embryonic development. Dev Biol 159:485–99.

    Article  PubMed  CAS  Google Scholar 

  • Fishman MC, Chien KR. 1997. Fashioning of the vertebrate heart: earliest embryonic decisions. Development (Camb) 124:2099–117.

    CAS  Google Scholar 

  • Franco D, Kelly R, Buckingham M, Moorman AFM. 1997. Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: morphogenetic implications. Dev Biol 187:17–33.

    Article  Google Scholar 

  • Funderburg FM, Markwald RR. 1986. Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration. J Cell Biol 103:2475–87.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez V, Schoenwolf GC. 1993. Primitive steak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–19.

    Article  PubMed  CAS  Google Scholar 

  • Gerety M, Watanabe M. 1997. Polysialylated NCAM on endocardial cells of the chick primary atrial septum. Anat Rec 247:71–84.

    Article  PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot AC, Bartelings MM, Poelmann RE. 1995. Cardiac morphogenesis. In: Clark EB, Markwald RR, Takao A, editors. Developmental mechanisms of heart disease. Armonk, NY: Futura Publishing Company, p 157–68.

    Google Scholar 

  • Goldmuntz E, Emmanuel BS. 1997. Genetic disorders of cardiac morphogenesis: the Di-George and velocardiofacial syndromes. Circ Res 80:437–43.

    Article  PubMed  CAS  Google Scholar 

  • Hall CL, Wang C, Lange LA, Turley EV. 1994. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 126:575–88.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL. 1951. A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.

    Article  Google Scholar 

  • Hiltgen G, Litke LL, Markwald RR. 1995. Morphogenetic alterations during endocardiac cushion development in trisomy 16 (Down’s) mouse. Pediatr Cardiol 17:21–30.

    Article  Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-deGroot AC, Poelmann RE. 1997. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80:473–481.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle C, Brown NA, Wolpert L. 1992. Development of left/right handedness in the chick heart. Development (Camb) 115:1071–8.

    CAS  Google Scholar 

  • Icardo JM, Sanchez MJ. 1991. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 84:2547–58.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Iwasaki K, et al. 1990. Leu7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue. Anat Embryol 182:553–62.

    Article  PubMed  CAS  Google Scholar 

  • Isokawa K, Rezaee M, Wunsch A, Markwald R, Krug EL. 1994. Identification of transferrin as one of multiple EDTA-extractable extracellular proteins involved in early chick heart morphogenesis. J Cell Biochem 54:207–18.

    Article  PubMed  CAS  Google Scholar 

  • Jones CM, Lyons KM, Hogan BLM. 1991. Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development (Camb) 111:531–42.

    CAS  Google Scholar 

  • Kern MJ, Argao EA, Potter SS. 1995. Homeobox genes and heart development. Trends Cardiovasc Med 5:47–54.

    Article  CAS  Google Scholar 

  • Kirby ML. 1993. Cellular and molecular contributions of the cardiac neural crest to cardiovascular development. Trends Cardiovasc Med 3:18–23.

    Article  PubMed  CAS  Google Scholar 

  • Kirby ML, Waldo K. 1995. Neural crest and cardiovascular patterning. Circ Res 77:211–5.

    Article  PubMed  CAS  Google Scholar 

  • Kitten GT, Markwald RR, Bolender DL. 1987. Distribution of basement membrane antigens in cryopreserved early embryonic hearts. Anat Rec 217:379–90.

    Article  PubMed  CAS  Google Scholar 

  • Kornenberg JR, Bradley C, Disteche CM. 1992. Down syndrome molecular mapping of the congenital heart disease and duodenal stenosis. Am J Hum Gen et 50:294–302.

    Google Scholar 

  • Kounnas MZ, Loukinova EB, Stefansson S, Harmony JA, Brewer BH, Strickland DK, Argraves WS. 1995. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J Biol Chem 270:13070–5.

    Article  PubMed  CAS  Google Scholar 

  • Krug EL, Mjaatvedt CH, Markwald RR. 1987. Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Dev Biol 120:348–55.

    Article  PubMed  CAS  Google Scholar 

  • Krug EL, Rezaee M, Isokawa K, Turner DK, Litke LL, Wunsch AM, Bain JL, Riley DA, Capehart AA, Markwald RR. 1995. Transformation of cardiac endothelium into cushion mesenchyme is dependent of ES/130: temporal, spatial, and functional studies in the early chick embryo. Cell Mol Biol Res 41:263–77.

    PubMed  CAS  Google Scholar 

  • Kurihara Y, Kurihara H, Oda H, Maemura K, Naga R, Ishikawa T. 1995. Aortic arch malformation and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 99:293–300.

    Article  Google Scholar 

  • Lamers WH, Wessels A, Verbeek FJ, Moorman AFM, Viragh S, Wenink ACG, Gittenberger-de Groot AC, Anderson RH. 1992. New findings concerning ventricular septation in the human heart. Circulation 86:1194–205.

    Article  PubMed  CAS  Google Scholar 

  • Lamers WH, Viragh S, Wessels A, Moorman AFM, Anderson RH. 1995. Formation of the tricuspid valve in the human heart. Circ Res 91:111–21.

    Article  CAS  Google Scholar 

  • Layton WM. 1978. Heart malformations in mice homozygous for a gene causing situs inversus. In: Birth Defects: Original Article Series. 14:277–93.

    Google Scholar 

  • Lee K, Simon H, Chen H, Bates B, Hung M, Hauser C. 1995. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature (Lond) 378:394–8.

    Article  CAS  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Keuhn M, Tabin C. 1995. A molecular pathway determing left-right asymmetry in chick embryogenesis. Cell 82:803–14.

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Schwartz JA, Olsen EN. 1997. Control of cardiac morphogenesis and myogenesis by the myogenic transcription factor MEF-2C. Science (Wash DC) 276:1404–7.

    Article  CAS  Google Scholar 

  • Lough JW, Bolender DL, Markwald RR. 1990. A culture model for cardiac morphogenesis. In: Embryonic origins of defective heart development. Ann Acad Sci 588:421–4.

    Article  Google Scholar 

  • Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X. 1996. Combined BMP-2 and FGF-4 but neither factor alone, induce cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Lyons R, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the horneo box gene Nkx2–5. Genes Dev 9:1654–66.

    Article  PubMed  CAS  Google Scholar 

  • Manasek FJ. 1976. Heart development: interactions involved in cardiac morphogenesis. In: Postle R, Nicolson G, editors. The cell surface in animal embryogenesis and development. New York: Elsevier. p 545–98.

    Google Scholar 

  • Manner J, Seidl W, Steding G. 1995. The role of extracardiac factors in normal and abnormal development of the chick embryo: cranial flexure and ventral thoracic wall. Anat Embryol 191:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ. 1977. Structural development of endocardial cushions. Am J Anat 148:85–120.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Bernanke DH, Kitten GT, Runyan RB, Funderburg FM, Brauer PR. 1984. Use of 3-dimensional collagen gel cultures to study cell:matrix interactions in heart development. In: Trelstad R, editor. The role of extracellular matrix in development. 42nd Symposium of The Society for Developmental Biology. Alan R. Liss. New York: p 323–50.

    Google Scholar 

  • Markwald RR, Rezaee M, Nakajima Y, Wunsch A, Isokawa K, Litke L, Krug EL. 1995. Molecular basis for the segmental pattern of cardiac cushion mesenchyme formation: role of ES/130 in the embryonic chick heart. In: Clark EB, Markwald RR, Takao A, editors. Developmental mechanisms of heart disease. Armonk, NY: Futura Publishing Company. p 185–94.

    Google Scholar 

  • Markwald RR, Eisenberg L, et al. 1996. Epithelial mesenchymal transformations in early avian heart development. Acta Anat 156:173–86.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Trusk T, Gittenberger-de Groot AC, Poelman R. 1997. Cardiac morpho-genesis: formation and septation of the primary heart tube. In: Kavlock R, Datson G, editor. Handbook of experimental pharmacology. 124/I. Berlin: Springer-Verlag. p 11–40.

    Google Scholar 

  • McGuire PG, Orkin RW. 1992. Urokinase activity in the developing avian heart: a spatial and temporal analysis. Dev Dyn 193:24–33.

    Article  PubMed  CAS  Google Scholar 

  • McGuire PG, Alexander SM. 1993. Inhibition of urokinase synthesis and cell surface binding alters the motile behavior of embryonic endocardial derived mesenchymal cells in vitro. Development (Camb) 118:931–9.

    CAS  Google Scholar 

  • Meyer D, Birchmeier C. 1995. Multiple essential functions of neuregulin in development. Nature (Land) 378:386–90.

    Article  CAS  Google Scholar 

  • Mikawa T, Borisov A, Brown AMC, Fischman DA. 1992. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 195:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Lepera RC, Markwald RR. 1987. Myocardial specificity for initiating endothelial-mesenchymal cell transition in embryonic chick heart correlates with a particulate distribution of fibronectin. Dev Biol 119:59–67.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Markwald RR. 1989. Induction of epithelial-mesenchymal transition by an in vivo adhcron-like complex. Dev Biol 136:118–128.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvcdt CH, Krug EL, Markwald RR. 1991. An antiserum (ES1) against a particulate form of extracellular matrix blocks the transformation of cardiac endothelium into mesenchyme in culture. Dev Biol 145:219–230.

    Article  Google Scholar 

  • Morcno-Rodriguez RA, de la Cruz MV, Krug EL. 1997. Temporal and spatial asymmetries in the initial distribution of mesenchyme cells in the atrioventricular canal cushions of the developing chick heart. Anat Rec 248:84–92.

    Article  Google Scholar 

  • Nakajima Y, Krug EL, Markwald RR. 1994. Myocardial regulation of transforming growth factor-beta expression by outflow tract endothelium in the early embryonic chick heart. Dev Biol 165:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Miyazono K, Kato M, Takase M, Yamagishi T, Nakamura H. 1997a. Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion formation in mouse embryonic hearts. J Cell Biol 136:193–204.

    Article  CAS  Google Scholar 

  • Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. 1997b. Expression of smooth muscle alpha-actin in mesenchymal cells lduring formation of avian endocardial cushion tissue: a role for transforming growth factor beta 3. Dev Dyn 209: 296–309.

    Article  CAS  Google Scholar 

  • Noden DM. 1991. Origins and patterning of avian outflow tract endocardium, Development (Camb) 111:857–861.

    Google Scholar 

  • Noden DM, Poelmann RE, Gittenberger-de Groot AC. 1995. Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc Med 5:69–75.

    Article  CAS  Google Scholar 

  • Olsen EN, Srivastava D. 1996. Molecular pathways controlling heart development. Science (Wash DC) 272:671–676.

    Article  Google Scholar 

  • O’Shea KS, Liu LH, Kinnunen LH, Dixit VM. 1990. Role of extracellular matrix protein thrombospondin in the early development of the mouse embryo. J, Cell Biol 111:2713–23.

    Article  Google Scholar 

  • Patterson DF, Pexieder T, Schnarr WR, Navratil T, Alaili R. 1993. A single major-gene defect underlying cardiac conotruncal malformations interferes with myocardial growth during embryonic development: studies in the CTD line of Keeshond dogs. Am J Hum Genet 52:388–97.

    PubMed  CAS  Google Scholar 

  • Pexieder T. 1975. Cell death in the morphogenesis and teratogenesis of the heart. Adv Anat Embryol Cell Biol 51 Fasc. 3:1–100.

    Google Scholar 

  • Pexieder T, Wenink ACG, Anderson RH. 1989. A suggested nomenclature for the developing heart. Int. J. Cardiol 25:255–64.

    Article  PubMed  CAS  Google Scholar 

  • Pexieder T. 1995. Conotruncus and its septation in the advent of the molecular biology era. In: Clark EB, Markwald RR, Takao A, editors. Developmental mechanisms of heart disease. Armonk, NY: Futura Publishing Co. Inc. p 227–47.

    Google Scholar 

  • Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. 1991. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor b3. Proc Natl Acad Sci USA 88:1516–20.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell AF, Moreno-Rodriguez RA, Weinecke MM, Sugi Y, Turner DK, Mjaatvedt CH, Markwald R. 1997. Patterning of ES/130 expression in the avian heart suggests induction of endocardial cushion tissue is mediated, in part, by an autoregulatory pathway. Acta Anat (submitted)

    Google Scholar 

  • Ramsdell A, Markwald R. 1997. Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGF beta-3-mediated autocrine signalling. Dev Biol 187:64–74. Rawles ME. 1943. The heart-forming areas of the early chick blastoderm. Physiol Zool 16:22–42.

    Google Scholar 

  • Rezaee M, Isokawa K, Krug EL, Markwald RR. 1993. Identification of a 130kDa protein potentially involved in cardiac morphogenesis. J Biol Chem 268:14404–11.

    PubMed  CAS  Google Scholar 

  • Robbins J, Doetschman T, Jones WK, Sanchez A. 1992. Embryonic stem cells as a model for cardiogenesis. Trends Cardiovasc Med 2:44–50.

    Article  PubMed  CAS  Google Scholar 

  • Rongish BJ, Little CD. 1995. Extracellular matrix in heart development. Experentia 51:873–82.

    Article  Google Scholar 

  • Rongish BJ, Drake CJ, Argraves WS and Little CD. 1998. Identification of the developmental marker, JB3, antigen as fibrillin-2 and its de novo organization into embryonic microfibrillous arrays. Dev Dyn (in press).

    Google Scholar 

  • Rosenquist TH, Fray-Gavalas C, Waldo K, Beall AC. 1990. Development of the musculoelastic septation complex in the avian truncus arteriosus. Am J Anat 189:339–56.

    Article  PubMed  CAS  Google Scholar 

  • Ross RS, Navankasattusas S, Harvey RP, Chien KR. 1996. An HF-la/HF-lb/MEF-2 combinatorial element confers cardiac ventricular specificity and establishes an anterior posterior gradient of expression. Development (Camb) 122:1799–809.

    CAS  Google Scholar 

  • Runyan RB, Markwald RR. 1983. Invasion of mesenchyme into three-dimensional gels: a re-gional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–14.

    Article  PubMed  CAS  Google Scholar 

  • Runyan RB, Potts JD, Sharma RV, Loeber CP, Chiang JJ, Bhalla RC. 1990. Signal transduc-tion of a tissue interaction during embryonic heart development. Cell Regul 1:301–13.

    PubMed  CAS  Google Scholar 

  • Runyan RB, Potts JD, Weeks DL. 1992. TGF beta-3 mediated tissue interaction during embryonic heart development. Mol Reprod Dev 32:152–9.

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka DL, Schwartz RJ. 1988. Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2755–2588.

    Article  Google Scholar 

  • Sakota I, Maas R. 1994. Msx-1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:34–356.

    Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T. 1997. TGF beta-2 knockout mice have multple developmental defects that are non-overlapping with other TGF beta knockout phenotypes. Development (Camb) 124:2645–57.

    Google Scholar 

  • Satin J, Fuji S, DeHaan RL. 1988. Development of cardiac beat rate in early chick embryos is regulated by regional cues. Dev Biol 129:103–13.

    Article  PubMed  CAS  Google Scholar 

  • Schilham MW, Oosterwegel MA, et al. 1996. Sox-4 gene is required for cardiac outflow tract formation and pro-B lymphocyte expansion. Nature (Lond) 380:711–4.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TM, Burch JBE, Lassar AB. 1997. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11:451–62.

    Article  PubMed  CAS  Google Scholar 

  • Sinning AR, Markwald RR. 1992. Multiple glycoproteins localize to a particulate form of extracellular matrix in regions of the embryonic where endothelial cells transform into mesenchyme. Anat Rec 232:285–92.

    Article  PubMed  CAS  Google Scholar 

  • Sinning AR, Hewitt CC, Markwald RR. 1995. A subset of SBA lectin-binding proteins isolated from myocardial-conditioned media transforms cardiac endothelium into mesenchyme. Acta Anat 154:111–9.

    Article  PubMed  CAS  Google Scholar 

  • Spemann H. 1938. Embryonic Development and Induction. New Haven, CT: Yale University Press.

    Google Scholar 

  • Spence SG, Argraves WS, Walters L, Hungerford JE, Little CD. 1992. Fibulin is localized at sites of epithelial-mesenchymal transitions in the early embryo. Dev Biol 151:73–484.

    Article  Google Scholar 

  • Spicer AP, Augustine M, McDonald JA. 1997. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J Biol Chem 272:8957–8691.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. 1997. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor dHAND. Nat Genet 16:154–60.

    Article  PubMed  CAS  Google Scholar 

  • Stefansson S, Lawrence DA, Argraves WS. 1996. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem 271:8215–8200.

    Article  PubMed  CAS  Google Scholar 

  • Sucov HM, Dyson E, Gumeringer CL, Price J, Chien C, Evans RM. 1994. RXR alpha-mutant mice establish a genetic basis for vitamin A signalling in heart morphogenesis. Genes Dev 8:1007–18.

    Article  PubMed  CAS  Google Scholar 

  • Sugi Y, Markwald RR. 1996. Formation and early morphogenesis of endocardial precursor cells and the role of endoderm. Dev Biol 175:66–83.

    Article  PubMed  CAS  Google Scholar 

  • Tasaka H, Krug EL, Markwald RR. 1996. Origin of the pulmonary venous orifice in the mouse and its relationship to the morphogenesis of the sinus venosus, extracardiac mesenchyme (spina vestibuli) and atrium. Anat Rec 246:107–13.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RP, Fitzharris TP. 1979. Morphogenesis of the truncus arteriosus of the chick embryo heart: tissue reorganization during septation. Am J Anat 156:251–64.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RP, Lindroth JR, Wong YM. 1990. Regional differences in DNA-synthetic activity in the preseptation myocardium of the chick. In: Clark EB, Takao A, editors. Developmental cardiology: morphogenesis and function. Mt. Kisco, NY: Futura Publishing Co. p 219–34.

    Google Scholar 

  • Thompson RP, Fitzharris TP. 1985. Division of the cardiac outflow. In: Ferrans V, Rosen-quist G, Weinstein C, editors. Cardiac morphogenesis. Elsevier Science. p 169–80.

    Google Scholar 

  • Tsuda T, Philp N, Zile JH, Linask KK. 1996. Left-right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev Biol 173:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Vuillemin M, Pexieder T, Winking H. 1991. Pathogenesis of various forms of double outlet right ventricle in mouse fetal trisomy 13. Int J Cardiol 33:281–304.

    Article  CAS  Google Scholar 

  • Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML. 1997. Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol (in press).

    Google Scholar 

  • Wall NA, Hogan B. 1994. TGF-beta related genes in development. Curr Opin Genet Dev 4:517–22.

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Anderson RH, Brown N. 1996. Endocardial cushion development and heart loop architecture inthe trisomy 16 mouse. Dev Dyn 206:301–9.

    CAS  Google Scholar 

  • Webb S, Brown NA, Wessels A, Anderson RH. 1997a. The development of the murine pulmonary vein and its relationship to the embryonic venous sinus. Anat Rec (in press).

    Google Scholar 

  • Webb S, Brown NA, Anderson RH. 1997b. Formation of the atrioventricular septal structures in the normal mouse. Circ Res (in press).

    Google Scholar 

  • Webb S. 1997. Development of the atrioventricular septum in trisomy 16 and normal mice. Doctoral Dissertation, Faculty of Science of the University of London, Imperial College School of Medicine at the National Heart and Lung Institute, London. p 142–79.

    Google Scholar 

  • Wenink ACG. 1987. Embryology of the heart. In: Anderson RH, Macartney FJ, Shine-bourne EA, Tynan M, editors. Paediatric Cardiology. Edinburgh: Churchill Livingston. p 83–107.

    Google Scholar 

  • Wessels A, Vermeulen JLM, Viragh Sz, Lamers WH, Moorman AFM. 1991. Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: II) an immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec 229:355–68.

    Article  PubMed  CAS  Google Scholar 

  • Wessels A, Vermeulen JLM, Verbeek FJ, Viragh Sz, Kalman F, Lamers WH, Moorman AFM. 1992. Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: III) an immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec 231:97–111.

    Article  Google Scholar 

  • Wessels A, Markman MWM, Vermeulen JLM, RH Anderson, Sz Viragh, AFM Moorman, WH Lamers. 1996. The development of the atrioventricular junction in the human heart: an immunohistochemical study. Circ Res 78:110–7.

    Article  PubMed  CAS  Google Scholar 

  • Wessels A, Markwald R, Webb S, Brown NA, Anderson RH, Moorman AFM, Lamers WH. 1998. Atrial development in the human heart: the role of the dorsal mesocardium in the development of the pulmonary veins and primary atrial septum. (submitted)

    Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BLM. 1995. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–16.

    Article  PubMed  CAS  Google Scholar 

  • Witte DP, Aronow BJ, Dry JK, Harmony J. 1996. Temporally and spatially restricted expression of apolipoprotein J in the developing heart defines discrete stages of valve morphogenesis. Dev Dyn 201:290–6.

    Google Scholar 

  • Wunsch A, Markwald RR, Little CD. 1994. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3 antigen, a fibrillinlike protein of the endocardial cushion tissue. Dev Biol 165:585–601.

    Article  PubMed  CAS  Google Scholar 

  • Ya J, Van den Hoff MJB, de Boer PAJ, Tesink-Taekema S, Franco D, Moorman AFM, Lamers WH. 1997a. The normal development of the outflow tract in the rat. Circ Res (in press)

    Google Scholar 

  • Ya J, Schilham MW, de Boer PAJ, Moorman AFM, Clevers H, Lamers WH. 1997b. Sox4deficient mice provide an animal model for the development of common trunk. (submitted)

    Google Scholar 

  • Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH. 1997. A heart segmental defect in the anterior/posterior axis of a transgenic mutant mouse. Dev Biol 186:58–72.

    Article  PubMed  CAS  Google Scholar 

  • Yost H. 1992. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature (Lond) 357:158–61.

    Article  CAS  Google Scholar 

  • Yutzey KE, Rhee JT, Bader DM. 1994. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of antcroposterior polarity in the developing chicken heart. Development (Camb) 120:871–83.

    CAS  Google Scholar 

  • Zhang H, Bradley A. 1996. Mice deficient for BMP-2 are nonviable and have defects in amnion/chorion and cardiac development. Development (Camb) 122:2977–86.

    CAS  Google Scholar 

  • Zou Y, Evans S, Chen J, Kuo H-C, Harvey RP, Chien KR. 1997. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2–5 homeobox gene pathway. Development (Camb) 124:793–809.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markwald, R.R., Trusk, T., Moreno-Rodriguez, R. (1998). Formation and Septation of the Tubular Heart: Integrating the Dynamics of Morphology With Emerging Molecular Concepts. In: de la Cruz, M.V., Markwald, R.R. (eds) Living Morphogenesis of the Heart. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1788-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1788-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7283-0

  • Online ISBN: 978-1-4612-1788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics