Skip to main content

Morphoregulatory Mechanisms Underlying Early Heart Development: Precardiac Stages to the Looping, Tubular Heart

  • Chapter
Living Morphogenesis of the Heart

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The formation of a single, beating, tubular heart in the embryo by the fusion of the two endocardial tubes is one of the early processes leading to normal heart development. Because of the prominence of this developmental event, there is often an underlying assumption that abnormalities that may lead to congenital heart disease arise during this fusion process and in the developmental events that follow during the later modeling of the chambers, septa, and valves. There is truth in this, but the developmental processes that take place before this are of equal or greater importance for cardiovascular development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antin PB, Taylor RG, Yatskievych T. 1994. Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 200:144–54.

    PubMed  CAS  Google Scholar 

  • Arias M, Villar JM. 1986. Differentiation of chick embryo cardiomyocytes in cellular cultures: influence of the neurogenic ectoderm. Cytobios 47:7–18.

    PubMed  CAS  Google Scholar 

  • Baldwin HS, Solursh M. 1989. Degradation of hyaluronic acid does not prevent looping of the mammalian heart in situ. Dev Biol 136:555–9.

    PubMed  CAS  Google Scholar 

  • Bodmer R. 1993. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development (Camb) 118:719–29.

    CAS  Google Scholar 

  • Bolker JA, Raff RA. 1997. Beyond worms, flies, and mice: it’s time to widen the scope of developmental biology. J NIH Res 9:35–9.

    Google Scholar 

  • Britz-Cunningham SH, Suppan CW, Fletcher WH. 1995. Connexin 43 (alpha 1) gap junction gene mutations associated with heart malformations and laterality defects. N Engl J Med 332:1323–9.

    PubMed  CAS  Google Scholar 

  • Brueckner M, D’Eustachio P, Horwich AL. 1989. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci USA 86:5035-.

    PubMed  CAS  Google Scholar 

  • Bryant SV, Gardiner, DM. 1992. Retinoic acid local cell-cell interactions and pattern formation in vertebrate limbs. Dev Biol 152:1–25.

    PubMed  CAS  Google Scholar 

  • Butler JK. 1952. An experimental analysis of cardiac loop formation in the chick. MA Thesis. The University of Texas, Austin.

    Google Scholar 

  • Castro-Quezada A, Nadal-Ginard B, de la Cruz M. 1972. Experimental study of the formation of the bulbo-ventricular loop in the chick. J Embryol Exp Morphol 27:623–37.

    PubMed  CAS  Google Scholar 

  • Chacko S, Joseph X. 1974. The effect of 5-bromodeoxyuridine (Brdu) on cardiac muscle differentiation. Dev Biol 40:340–54.

    PubMed  CAS  Google Scholar 

  • Chambon P. 1994. The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol 5:115–25.

    PubMed  CAS  Google Scholar 

  • Chen Y, Huang L, Russo AF, Solursh M. 1992. Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc Natl Acad Sci USA 89:10056–9.

    PubMed  CAS  Google Scholar 

  • Chen Y, Solursh M. 1992. Comparison of Hensen’s node and retinoic acid in secondary axis induction in the early chick embryo. Dev Dyn 195:142–51.

    PubMed  CAS  Google Scholar 

  • Choy M, Armstrong MT, Armstrong PB. 1991. Transforming growth factor-Ăźl localised within the heart of the chick embryo. Anat Embryol 183:345–52.

    PubMed  CAS  Google Scholar 

  • Clark EB. 1986. Cardiac embryology. Its relevance to congenital heart disease. Am J Dis Child 140:41–4.

    PubMed  CAS  Google Scholar 

  • Climent S, Sarasa M, Villar JM, Murillo-Ferrol NL. 1995. Neurogenic cells inhibit the differentiation of cardiogenic cells. Dev Biol 171:130–48.

    PubMed  CAS  Google Scholar 

  • Coffin JD, Poole TJ. 1988. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development (Camb) 102:735–48.

    CAS  Google Scholar 

  • Cohen-Gould L, Mikawa T. 1996. The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 177:265–73.

    PubMed  CAS  Google Scholar 

  • Danos MC, Yost J. 1995. Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development (Camb) 121:1467–74.

    CAS  Google Scholar 

  • DeHaan RL. 1963a. Organization of the cardiogenic plate in the early chick embryo. Acta Embryol Morphol Exp 6:26–38.

    Google Scholar 

  • DeHaan RL. 1963b. Regional organization of pre-pacemaker cells in the cardiac primordia of the early chick embryo. J Embryol Exp Morphol 11:65–76.

    Google Scholar 

  • DeHaan RL. 1964. Cell interactions and oriented movements during development. J Exp Zool 157:127–138.

    Google Scholar 

  • de la Cruz MV, Sanchez-Gomez C, Palomina MA. 1989. The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–31.

    Google Scholar 

  • Dersch H, Zile MH. 1993. Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160:424–33.

    PubMed  CAS  Google Scholar 

  • Dickson MC, Slager HG, Duffie E, Mummery CL, Akhurst RJ. 1993. RNA and protein localisations of TGF-132 in the early mouse embryo suggest an involvement in cardiac development. Development (Camb) 117:625–39.

    CAS  Google Scholar 

  • Drake CJ, Davis LA, Little CD. 1992. Antibodies to β1 integrins cause alterations of aortic vasculogenesis in vivo. Dev Dyn 193:83–91.

    PubMed  CAS  Google Scholar 

  • Drake CJ, Davis LA, Walters L, Little CD. 1990. Avian vasculogenesis and the distribution of collagens I, IV, lamimin, and fibronectin in the heart primordia. J Exp Zoo! 255:309–22.

    PubMed  CAS  Google Scholar 

  • Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. 1992. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial celss and their presumptive precursors. Oncogene 7:1471–80.

    PubMed  CAS  Google Scholar 

  • Edmondson DG, Lyons GE, Martin JF, Olson EN. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development (Camb) 120:1251–63.

    CAS  Google Scholar 

  • Eisenberg CA, Bader D. 1995. QCE-6: a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol 167:469–81.

    PubMed  CAS  Google Scholar 

  • Eisenberg CA, Gourdie RG, Eisenberg LM. 1997. Wnt-11 is expresed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE-6. Development (Camb) 124:525–36.

    CAS  Google Scholar 

  • Evans T, Felsenfeld G. 1989. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877–85.

    PubMed  CAS  Google Scholar 

  • Evans T, Felsenfeld G, Reitman M. 1990. Control of globin gene transcription. Annu Rev Cell Biol 6:95–124.

    PubMed  CAS  Google Scholar 

  • Ewart JL, Cohen MF, Meyer RA, Huang GY, Wessels A, Gourdie RG, Chin AJ, Park SMJ, Lazatin BO, Villabon S, Lo CW. 1997. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development (Camb) 124:1281–92.

    PubMed  CAS  Google Scholar 

  • Ferencz C. 1990. A case-control study of cardiovascular malformations in liveborn infants: the morphogenetic relevance of epidemiologic findings. In: Clark EB, Takao A, editors. Developmental cardiology: morphogenesis and function. Mount Kisco, NY: Futura. 523–39.

    Google Scholar 

  • Ferrara N, Henzel WJ. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–8.

    PubMed  CAS  Google Scholar 

  • Folkman J, Klagsbrun M. 1987. A family of angiogenic peptides. Nature (Lond) 329:671–2.

    CAS  Google Scholar 

  • Gallagher BC, Sakai LY, Little CD. 1993. Fibrillin delineates the primary axis of the early avian embryo. Dev Dyn 196:70–8.

    PubMed  CAS  Google Scholar 

  • Garcia-Martinez V, Schoenwolf GC. 1993. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–19.

    PubMed  CAS  Google Scholar 

  • George EL, Georges-Labouesse EN, et al. 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development (Camb) 119:1079–91.

    CAS  Google Scholar 

  • Goncharova EJ, Kam Z, Geiger B. 1992. The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development (Camb) 114:173–83.

    CAS  Google Scholar 

  • Gonzalez-Sanchez A, Bader D. 1984. Immunochemical analysis of myosin heavy chains in the development chicken heart. Dev Biol 103:151–8.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez A, Bader D. 1990. In vitro analysis of cardiac progenitor cell differentiation. Dev Biol 139:197–209.

    PubMed  CAS  Google Scholar 

  • Gove C, Walmsley M, Nijjar S, Bertwistle D, Guille M, Partington G, Bomford A, Patient R. 1997. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO (Eur Mol Biol Organ) J 16:355–68.

    CAS  Google Scholar 

  • Green JBA, Smith JC. 1990. Graded changes in dose of a xenopus activin a homologue elicit stepwise transitions in embryonic fate. Nature (Lond) 347:391–470.

    CAS  Google Scholar 

  • Gudas LJ, Sporn MB, Roberts AB. 1994. Cellular biology and biochemistry of the retinoids. In: Sporn MB, Roberts AB, Goodman DS, editors. The retinoids: biology, chemistry, and medicine. New York: Raven, pp 443–520.

    Google Scholar 

  • Guo H, Acevedo P, Parsa FD, Bertram JS. 1992. Gap-junctional protein connexin 43 is expressed in dermis and epidermis of human skin: differential modulation by retinoids. J Investig Dermatol 99:460–7.

    PubMed  CAS  Google Scholar 

  • Gurdon JB. 1987. Embryonic induction-molecular prospects. Development (Camb) 99:285–306.

    CAS  Google Scholar 

  • Hamburger V, Hamilton HL. 1951. A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.

    Google Scholar 

  • Han Y, Dennis JE, Cohen-Gould L, Bader DM, Fischman DA. 1992. Expression of sarcomeric myosin in the presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Dev Dyn 193:257–65.

    PubMed  CAS  Google Scholar 

  • Harvey RP, Lyons I, Li R, Parsons LM, Hartley L, Andrews J, Smith M. 1994. Targeted mutagenesis of the heart-expressed homeobox gene Nkx-2.5 results in abnormal heart development and embryonic lethality. J Cell Biochem Suppl 18D:477a.

    Google Scholar 

  • Heikinheimo M, Scandrett JM, Wilson DB. 1994. Localization of transcription factor GATA- 4 to regions of the mouse embryo involved in cardiac development. Dev Biol 164:361–73.

    PubMed  CAS  Google Scholar 

  • Heine UI, Roberts AB, Munoz EF, Roche NS, Sporn MB. 1985. Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch B Cell Pathol 50:135–52.

    CAS  Google Scholar 

  • Holtzer H, Abbott J, Cavanaugh MW 1959. Some properties of embryonic cardiac myoblasts. Exp Cell Res 16:595–601.

    PubMed  CAS  Google Scholar 

  • Hoyle C, Brown NA, Wolpert L. 1992. Development of left/right handedness in the chick heart. Development (Camb) 115:1071–8.

    CAS  Google Scholar 

  • Icardo JM, Manasek FJ. 1983. Fibronectin distribution during early chick embryo heart development. Dev Biol 95:19–30.

    PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida K, Knudsen K, Linask KK 1998. N-cadherin is required for the differentiation and initial myofibrillogenesis of chick cardiomyocytes. Cell Motility Cytoskel 39:52–62.

    PubMed  CAS  Google Scholar 

  • Inagaki T, Garcia-Martinez V, Schoenwolf GC. 1993. Regulative ability of the prospective cardiogenic and vasculogenic areas of the primitive streak during avian gastrulation. Dev Dyn 197:57–68.

    PubMed  CAS  Google Scholar 

  • Ingber DE, Madri JA, Folkman J. 1987. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev Biol 23:387–94.

    Google Scholar 

  • Isaac A, Sargent MG, Cooke J. 1997. Control of vertebrate left-right asymmetry by a smail-related zinc finger gene. Science (Wash DC) 275:1301–4.

    CAS  Google Scholar 

  • Itasaki N, Nakamura H, et al. 1991. Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anat Embryol 183:29–39.

    PubMed  CAS  Google Scholar 

  • Jacobson AG, Sater AK. 1988. Features of embryonic induction. Development (Camb) 104:341–59.

    CAS  Google Scholar 

  • Jessel TM, Melton DA. 1992. Diffusible factors in vertebrate embryonic induction. Cell 68:257–70.

    Google Scholar 

  • Jeter JR, Cameron IL. 1971. Cell proliferation patterns during cytodifferentiation in embry-onic chick tissues: liver, heart and erythrocytes. J Embryol Exp Morphol 23:403–22.

    Google Scholar 

  • Kamino K. 1991. Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev 71:53–91.

    PubMed  CAS  Google Scholar 

  • Kardami E, Fandrich RR. (1989). Basic fibroblast growth factor in atria and ventricles of the vetebrate heart. J Cell Biol 109:1865–75.

    PubMed  CAS  Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch JL, Dolle P, Chambon P. 1994. Genetic analysis of RXR developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003.

    PubMed  CAS  Google Scholar 

  • Kelley C, Blumber H, Zon LI, Evans T. 1993. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development (Camb) 118:817–27.

    CAS  Google Scholar 

  • Kessler DS, Melton DA. 1994. Vertebrate embryonic induction: mesodermal and neural patterning. Science (Wash DC) 266:596–604.

    CAS  Google Scholar 

  • Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD. 1991. Murine and human T lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11:2778–84.

    PubMed  CAS  Google Scholar 

  • Kokan-Moore NP, Bolender DL, Lough J. 1991. Secretion of inhibin Ăź by endoderm cultured from early embryonic chicken. Dev Biol 146:242–5.

    PubMed  CAS  Google Scholar 

  • Kostetskii I, Linask KK, Zile MH. 1995. Vitamin A deficiency and the expression of retinoic acid receptors (RARs) in early quail embryo. Roux’s Arch Dev Biol 205:260–71.

    Google Scholar 

  • Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM. 1997. GATA 4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–60.

    PubMed  CAS  Google Scholar 

  • Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P. 1995. Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development (Camb) 121:539–48.

    CAS  Google Scholar 

  • Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejane E. 1992. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–22.

    PubMed  CAS  Google Scholar 

  • Larsen WJ. 1993. Human Embryology. New York: Churchill Livingstone.

    Google Scholar 

  • Lash JW, Linask KK, Yamada KM. 1987. Synthetic peptides that mimic the adhesive recognition signal of fibronectin: differential effects on cell-cell and cell-substratum adhesion in embryonic chick cells. Dev Biol 123:411–20.

    PubMed  CAS  Google Scholar 

  • Lash JW, Rhee D, Zibrida JT, Philip N. 1992. A monoclonal antibody that reacts with the ventro-caudal quadrant of newly formed somites. In: Bellairs R, Sanders EJ, Lash JW, editors. Formation and differentiation of early embryonic mesoderm. New York: Plenum Press. 169–80.

    Google Scholar 

  • Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T. 1994. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:23177–84.

    PubMed  CAS  Google Scholar 

  • Lawson KA, Menses JJ, Pedersen RA. 1991. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development (Camb) 113:891–911.

    CAS  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. 1995. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–14.

    PubMed  CAS  Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science (Wash DC) 276:1404–7.

    CAS  Google Scholar 

  • Linask K, Gui YH, Rasheed R, Kwon L. 1992. Pattern development during pericardial coelom formation and specification of the cardiomyocyte cell population by N-cadherin and the Drosophila armadillo protein homologue in the early chick embryo. Mol Biol Cell 3 (Suppl)206A.

    Google Scholar 

  • Linask KK. 1992a. N-cadherin localization in early heart development and polar expression of Na, K-ATPase, and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev Biol 151:213–24.

    CAS  Google Scholar 

  • Linask KK. 1992b. Regulatory role of cell adhesion molecules in early heart development. In: Bellairs R, Sanders EJ, Lash JW, editors. Formation and differentiation of early embryonic mesoderm. New York: Plenum. p 301–13.

    Google Scholar 

  • Linask KK, Gui YH. 1995. Inhibitory effects of ouabain on early heart development and cardiomyogenesis in the chick embryo. Dev Dyn 203:93–105.

    PubMed  CAS  Google Scholar 

  • Linask KK, Knudsen KA, Gui YH. 1997. N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development. Dev Biol 185:148–64.

    PubMed  CAS  Google Scholar 

  • Linask KK, Lash JW. 1986. Precardiac cell migration: fibronectin localization at mesoderm-endoderm interface during directional movement. Dev Biol 144:87–101.

    Google Scholar 

  • Linask KK, Lash JW. 1988a. A role for fibronectin in the migration of avian precardiac cells.I. Dose dependent effects of fibronectin antibody. Dev Biol 129:315–23.

    CAS  Google Scholar 

  • Linask KK, Lash JW. 1988b. A role for fibronectin in the migration of avian precardiac cells.II. Rotation of the heart-forming region during different stages and its effects. Dev Biol 129:324–29.

    CAS  Google Scholar 

  • Linask KK, Lash JW. 1990. Fibronectin and integrin distribution on migrating precardiac mesoderm cells. Ann NY Acad Sci 588:417–20.

    Google Scholar 

  • Linask KK, Lash JW. 1993. Early heart development: dynamics of endocardial cell sorting suggests a common origin with cardiomyocytes. Dev Dyn 195:62–9.

    Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. 1993. Nkx-2.5 a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development (Camb) 119:419–31.

    CAS  Google Scholar 

  • Litvin J, Montgomery MO, Goldhamer DJ, Emerson CP, Bader DM. 1993. Identification of DNA-binding protein(s) in the developing heart. Dev Biol 156:409–17.

    PubMed  CAS  Google Scholar 

  • Logan M, Mohun T. 1993. Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos. Development (Camb) 118:865–75.

    CAS  Google Scholar 

  • Lohr JL, Danos MC, Yost HJ. 1997. Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development (Camb) 124:1465–72.

    CAS  Google Scholar 

  • Lyons G, Buckingham ME. 1992. Developmental regulation of myogenesis in the mouse. Semin Dev Biol 3:243–53.

    Google Scholar 

  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb I, RP H. 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx 2.5. Genes Dev 9:1654–66.

    PubMed  CAS  Google Scholar 

  • Manasek FJ, Burnside MB, Waterman RE. 1972. Myocardial cell shape change as a mechanism of embryonic looping. Dev Biol 29:349–71.

    PubMed  CAS  Google Scholar 

  • Manasek FJ, Monroe RG. 1972. Early cardiac morphogenesis is independent of function. Dev Biol 27:584–8.

    PubMed  CAS  Google Scholar 

  • Manner J, Seidl W, Steding G. 1995. The role of extracardiac factors in normal and abnormal development of the chick embryo heart: cranial and ventral thoracic wall. Anat Embryol 191:61–72.

    PubMed  CAS  Google Scholar 

  • McCrea PD, Turck CW, Gumbiner B. 1991. A homolog of the armadillo protein in drosophila (plakoglobin) associated with E-cadherin. Science (Wash DC) 254:1359–61.

    Google Scholar 

  • McNeil H, Ozawa M, Kemier R, Nelson WJ. 1990. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62:309–16.

    Google Scholar 

  • Melton D.A. 1991. Pattern formation during animal development. Science (Wash DC) 252:234–41.

    PubMed  CAS  Google Scholar 

  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M. 1994. Function of the retinoic acid receptors (RARs) during development. Development (Camb) 120:2749–71.

    CAS  Google Scholar 

  • Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H. 1996. Left-right asymmetric expression of the TGF-Ăź-family member lefty in mouse embryos. Nature (Land) 381:151–5.

    CAS  Google Scholar 

  • Mieziewska K, Szel A, Van Veen T, Aguirre GD, Philp N. 1994a. Redistribution of insoluble interphotoreceptor matrix components during photoreceptor differentiation in the mouse retina. J Comp Neurol 345:115–124.

    CAS  Google Scholar 

  • Mieziewska KE, Devenny J, van Veen T, Aguirre GD, Philp N. 1994b. Characterization of a developmentally regulated component of ocular extracellular matrix that is evolutionarily conserved. Investing Ophthalmol Vis Sci 35:1608a.

    Google Scholar 

  • Mikawa T, Borisov A, Brown AMC, Fischman DA. 1992. Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication defective retrovirus: 1 Formation of the ventricular myocardium. Dev Dyn 193:11–23.

    PubMed  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NPH, Risau W, Ullrich A. 1993. High affinity VEGF binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–46.

    PubMed  CAS  Google Scholar 

  • Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA. 1990. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63:495–501.

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Kalvakolanu DV, Markham BE, 1994. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14:4947–57.

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Lin Q, Duncan sA, Olson EN. 1997. Requirement of the transcription factor GATA 4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–72.

    PubMed  CAS  Google Scholar 

  • Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH. 1996. Targeted disruption of the Wnt2 gene results in placentation defects. Development (Camb) 122:3343–53.

    CAS  Google Scholar 

  • Montgomery MO, Litvin J, Gonzalez-Sanchez A, Bader D. 1994. Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 164:63–71.

    PubMed  CAS  Google Scholar 

  • Moon R, Christian JL. 1992. Competence modifiers synergize with growth factors during mesoderm induction and patterning in Xenopus. Cell 71:709–12.

    PubMed  CAS  Google Scholar 

  • Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS. 1997. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 183:21–36.

    PubMed  CAS  Google Scholar 

  • Moore KL. 1993. The Developing Human: Clinically Oriented Embryology. Philadelphia: WB Saunders.

    Google Scholar 

  • Muslin AJ, Williams LT. 1991. Well-defined growth factors promote cardiac development in axolotl mesodermal explants. Development (Camb) 112:1095–101.

    CAS  Google Scholar 

  • Nakamura A, Manasek FJ. 1978. Experimental studies of the shape and structure of isolated cardiac jelly. J Embryol Exp Morphol 43:167–183.

    PubMed  CAS  Google Scholar 

  • Narita N, Heikinheimo M, et al. 1996. The gene for transcription factor GATA-6 resides on mouse chromosome 18 and is expressed in myocardium and vascular smooth muscle. Genomics 36:345–8.

    PubMed  CAS  Google Scholar 

  • Nathan C, Sporn M. 1991. Cytokines in context. J Cell Biol 113:981–6.

    PubMed  CAS  Google Scholar 

  • Noden DM. 1990. Origins and assembly of avian embryonic blood vessels. Ann N Y Acad Sci 558:236–49.

    Google Scholar 

  • Nusse R, Varmus HE. 1992. Wnt genes. A review. Cell 69:1073–87.

    CAS  Google Scholar 

  • Oppenheimer JM. 1967. Essays in the History of Embryology and Biology. Cambridge, MA: The M.I.T. Press.

    Google Scholar 

  • Orts Llorca F, Gil DR. 1967. A causal analysis of the heart curvatures in the chick embryo. Wilhelm Roux, Arch Entwicklungsmech Org 158:52–63.

    Google Scholar 

  • Orts-Llorca F. 1963. Influence of the endoderm on heart differentiation during the early stages of development of the chick embryo. Wilhelm Roux’ Arch Entwicklungsmech Org 154:533–51.

    Google Scholar 

  • Orts-Llorca F, Gil DR. 1965. Influence of the endoderm on heart differentiation. Wilhelm Roux’ Arch Entwicklungsmech Org 156:368–70.

    Google Scholar 

  • Osmond MK, Butler AJ, Voon, FCT, Bellairs, R. 1991. The effects of retinoic acid on heart formation in the early chick embryo. Development (Camb) 113:1405–17.

    CAS  Google Scholar 

  • Ozawa M, Kemler R. 1992. Molecular organization of the uvomorulin-catenin complex. J Cell Biol 116:989–96.

    PubMed  CAS  Google Scholar 

  • Pardanaud L, Atlmann C, Kitos P, Dieterlen-Lievre F, Buck CA. 1987. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development (Camb) 100:339–49.

    CAS  Google Scholar 

  • Pardanaud L, Dieterlen-Lievre F. 1993. Emergence of endothelial and hemopoietic cells in the avian embryo. Anat Embryol 187:107–14.

    PubMed  CAS  Google Scholar 

  • Parlow MH, Bolender DL, Kokan-Moore NP, Lough J. 1991. Localization of bFGF-like proteins as punctate inclusions in the preseptation myocardium of the chicken embryo. Dev Biol 146:139–47.

    PubMed  CAS  Google Scholar 

  • Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM. 1992. The vertebrate adhesive junction proteins Ăź-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 118:681–91.

    PubMed  CAS  Google Scholar 

  • Peifer M, Rauskolb C, Williams M, Riggleman B, Wieschaus E. 1991. The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development (Camb) 111:1029–43.

    CAS  Google Scholar 

  • Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. 1991. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci USA 88:1516–20.

    PubMed  CAS  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. 1997. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78.

    PubMed  CAS  Google Scholar 

  • Rawles ME. 1943. The heart-forming areas of the early chick blastoderm. Physiol Zool 16:22–44.

    Google Scholar 

  • Rhee D, Sanger JM, Sanger JW. 1994. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24.

    PubMed  CAS  Google Scholar 

  • Risau W, Lemmon V. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–50.

    PubMed  CAS  Google Scholar 

  • Risau W, Sariola H, Zerwes H-G, Sasse J, Ekblom P, Kemler R, Doetschman T. 1988. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development (Camb) 102:471–8.

    CAS  Google Scholar 

  • Rogers MB, Berestecky JM, Hossain MZ, Guo HM, Kadle R, Nicholson BJ, Bertram JS. 1990. Retinoid-enhanced gap junctional communication is achieved by increased levels of connexin 43 mRNA and protein. Mol Carcinog 3: 335–43.

    PubMed  CAS  Google Scholar 

  • Rosenquist GC, DeHaan RL. 1966. Migration of precardiac cells in the chick embryo: a radioautographic study. Carnegie Inst Washington, Contrib Embryo 38:111–21.

    Google Scholar 

  • Sabin FR. 1920. Studies on the origin of blood-vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 9:213–62.

    Google Scholar 

  • Sanger JM, Mittal B, Pochapin MB, Sanger JW. 1986. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 102:2053–66.

    PubMed  CAS  Google Scholar 

  • Sanger JW, Mittal B, Sanger JM. 1984. Formation of myofibrils in spreading chick cardiac myocytes. J Cell Motil 4:405–16.

    CAS  Google Scholar 

  • Satin J, Fujii S, DeHaan RL. 1988. Development of cardiac beat rate in early chick embryos is regulated by regional cues. Dev Biol 129:103–13.

    PubMed  CAS  Google Scholar 

  • Schultheiss TM, Xydas S, Lassar AB. 1995. Induction of avian cardiac myogenesis my anterior endoderm. Development (Camb) 121:4203–14.

    CAS  Google Scholar 

  • Schwartz K, LeCarpentier Y, Martin JL, Lompre AM, Mercadier JJ, Swynghedauw B. 1981. Myosin ioenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 13:1074–5.

    Google Scholar 

  • Seidel CL, Dennison DK, Amick S, Allen JC. 1993. Relationship between functional Na pumps and mitogenesis in cultured coronary artery smooth muscle cells. Am J Physiol 264:C169–78.

    PubMed  Google Scholar 

  • Smith SM 1994. Retinoic acid receptor isoform 132 is an early marker for alimentary tract and central nervous system positional specification in the chicken. Dev Dyn 200:14–25.

    PubMed  CAS  Google Scholar 

  • Smith SM, Dickman ED, Thompson B, Sinning A, Wunsch A, Marwald R. 1997. Retinoic acid directs cardiac laterality and the expression of early markers of precardiac asymmetry. Dev Biol 182:162–71.

    PubMed  CAS  Google Scholar 

  • Sokol S, Melton DA. 1991. Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin. Nature (Lond) 351:409–11.

    CAS  Google Scholar 

  • Soler AP, Knudsen KA. 1994. N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. Dev Biol 162:9–17.

    PubMed  CAS  Google Scholar 

  • Spermann H. 1901. Uber Korrelationen in der Entwicklung des Auges. Verh Anat Ges 15:61–79.

    Google Scholar 

  • Spemann H, Mangold H. 1924. Uber Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch Mikrosk Anat Entw Mech 100:599–638.

    Google Scholar 

  • Srivastava D, Cserjesi P, Olson EN. 1995. A subclass of bHLH proteins required for cardiac morphogenesis. Science (Wash DC) 270:1995–9.

    CAS  Google Scholar 

  • Stainier DYR, Fishman MC. 1992. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153:91–101.

    PubMed  CAS  Google Scholar 

  • Sugi YJS, Barron M, Lough J. 1995. Developmental expression of fibroblast growth factor receptor-1 (cek-1; flg) during heart development. Dev Dyn 202:115–25.

    PubMed  CAS  Google Scholar 

  • Sugi Y, Lough J. 1994. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 200:155–62.

    PubMed  CAS  Google Scholar 

  • Sugi Y, Markwald RR. 1996. Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Dev Biol 175:66–83.

    PubMed  CAS  Google Scholar 

  • Sweeney LJ, Zak R, Manasek FJ. 1987. Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ Res 61:287–95.

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT, Maher PA. 1987. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofloresence titin spots in premyofibril stages. J Cell Biol 105:2781–93.

    PubMed  CAS  Google Scholar 

  • Tonissen KF, Drysdale TA, Lints TJ, Harvey RP, Krieg PA. 1994. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman evidence of a conserved role in cardiac development. Dev Biol 162:325–8.

    CAS  Google Scholar 

  • Tsuda T, Philp N, Zile MH, Linask KK. 1996. Left-right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev Biol 173:39–50.

    PubMed  CAS  Google Scholar 

  • Twal W, Roze L, Zile MH. 1995. Anti-retinoic acid monoclonal antibody localizes all-transretinoic acid in target cells and blocks normal development in early quail embryo. Dev Biol 168:225–34.

    CAS  Google Scholar 

  • Van der Stricht O. 1895. La premiere apparition de la cavite coelomique dans l’aire embryonnaire du lapin. C Seances Soc Biol Ses 10.12:207–11.

    Google Scholar 

  • von Baer KE. 1828–1837. Uber Entwicklungsgeschichte der Theire. Beobachtung and Reflexion. Konigsberg.

    Google Scholar 

  • Wheelock MJ, Knudsen KA. 1991. N-cadherin-associated proteins in chicken muscle. Differentiation. 46:35–42.

    PubMed  CAS  Google Scholar 

  • Wiley LM. 1984. Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev Biol 105:330–42.

    PubMed  CAS  Google Scholar 

  • Wilman-Coffelt J, Refsum H, Hollosi G, Rouleau L, Chuck L, Parmley WW. 1982. Comparative force-velocity relation and analyses of myosin of dog atria and ventricles. Am J Physiol 243:H391–7.

    Google Scholar 

  • Wilson DB, Dorfman DM, Orkin SH. 1990. A nonerythroid GATA-binding protein is required for function of the human preproendothelin-1 promoter in endothelial cells. Mol Cell Biol 10:4854–62.

    CAS  Google Scholar 

  • Wu X, Golden K, Bodmer R. 1995. Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–28.

    PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conion RA, Breitman ML. 1993. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development (Camb) 118:489–98.

    CAS  Google Scholar 

  • Yamazaki Y, Hirakow R. 1991. Factors required for differentiation of chick precardiac mesoderm cultured in vitro. Proc Jpn Acad Ser B Phys Biol Sci 67:165–9.

    Google Scholar 

  • Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FFB, Overbeek PA. 1993. Reversal of left-right asymmetry: a situs inversus mutation. Science (Wash DC) 260:679–82.

    PubMed  CAS  Google Scholar 

  • Yost HJ. 1990. Inhibition of proteoglycan synthesis eliminates left-right asymmetry in Xenopus laevis cardiac looping. Development (Camb) 110:865–74.

    PubMed  CAS  Google Scholar 

  • Yost HJ. 1992. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature (Lond) 357:158–61.

    PubMed  CAS  Google Scholar 

  • Yutzey KE, Rhee JT, Bader D. 1994. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development (Camb) 120:871–83.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linask, K.K., Lash, J.W. (1998). Morphoregulatory Mechanisms Underlying Early Heart Development: Precardiac Stages to the Looping, Tubular Heart. In: de la Cruz, M.V., Markwald, R.R. (eds) Living Morphogenesis of the Heart. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1788-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1788-6_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7283-0

  • Online ISBN: 978-1-4612-1788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics