Skip to main content

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

Our purpose is to study an optimal ergodic control problem where the state of the system is given by a diffusion process with jumps in the whole space. The corresponding dynamic programming (or Hamilton-Jacobi-Bellman) equation is a quasi-linear integro-differential equation of second order. A key result is to prove the existence and uniqueness of an invariant density function for a jump diffusion, whose lower order coefficients are only locally bounded and Borel measurable. Based on this invariant probability, existence and uniqueness (up to an additive constant) of solutions to the ergodic HJB equation is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Bensoussan, Perturbation methods in optimal control, Wiley, New York, 1988.

    MATH  Google Scholar 

  2. A. Bensoussan and J.L. Lions, Applications of variationals inequalities in stochastic control, North-Holland, Amsterdam, 1982.

    Google Scholar 

  3. A. Bensoussan and J.L. Lions, Impulse control and quasi-variational inequalities, Gauthier-Villars, Paris, 1984.

    Google Scholar 

  4. V.S. Borkar, Topics in Controlled Markov Chains, Pitman Research Notes in Mathematics Series No 240, Longman, Essex, 1991.

    Google Scholar 

  5. M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc, 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.N. Ethier and T.G. Kurtz, Markov processes, Wiley, New York, 1986.

    Book  MATH  Google Scholar 

  7. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1992.

    Google Scholar 

  8. M.G. Garroni and J.L. Menaldi Green functions for second order integral-differential problems, Pitman Research Notes in Mathematics Series No 275, Longman, Essex, 1992.

    Google Scholar 

  9. I.I. Gikhman and A.V. Skorokhod, Stochastic differential equations, Springer-Verlag, Berlin, 1972.

    Book  MATH  Google Scholar 

  10. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Second Edition, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  11. F. Gimbert and P.L. Lions, Existence and regularity results for solutions of second order elliptic integro-differential operators, Ricerche di Matematica, 33 (1984), 315–358

    MathSciNet  MATH  Google Scholar 

  12. R.Z. Khasminskii, (Hasminskii) Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, The Netherlands, 1980.

    Book  Google Scholar 

  13. N.V. Krylov, Nonlinear elliptic and parabolic equations of second order, Reidel, Dordrecht, 1987

    Book  MATH  Google Scholar 

  14. O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear elliptic equations, Academinc Press, New York, 1968.

    MATH  Google Scholar 

  15. P.L. Lions, A remark on Bony Maximum principle, Procedings Am. Math. Soc, 88 (1982), 503–508.

    Article  Google Scholar 

  16. J.L. Menaldi, On the stopping time problem for degenerate diffusions, SIAM J. Control Optim., 18 (1980), 697–721.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.L. Menaldi, Optimal impulse control problems for degenerate diffusions with jumps, Acta Appl. Math., 8 (1987), 165–198.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.L. Menaldi and M. Robin, Ergodic control of reflected diffusions with jumps, Appl. Math. Optim., 35 (1997), 117–137.

    MathSciNet  MATH  Google Scholar 

  19. J.L. Menaldi and M. Robin, Invariant Measure for Diffusions with Jumps, Appl. Math. Optim., to appear.

    Google Scholar 

  20. M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Second edition, Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  21. M. Robin, Long-term average cost control problems for continuous time Markov processes: A survey, Acta Appl. Math., 1 (1983), 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  22. D.W. Stroock and S.R. Varadhan, Multidimensional diffusion process, Springer-Verlag, Berlin, 1979.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menaldi, JL., Robin, M. (1999). On Optimal Ergodic Control of Diffusions with Jumps. In: McEneaney, W.M., Yin, G.G., Zhang, Q. (eds) Stochastic Analysis, Control, Optimization and Applications. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1784-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1784-8_26

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7281-6

  • Online ISBN: 978-1-4612-1784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics