Skip to main content

Automatic Differentiation and Navier-Stokes Computations

  • Chapter
Book cover Computational Methods for Optimal Design and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 24))

Abstract

We describe the use of automatic differentiation (AD) in, and its application to, a compressible NavierStokes model. Within the solver, AD is used to accelerate convergence by more than an order of magnitude. Outside the solver, AD is used to compute the derivatives needed for optimization. We emphasize the potential for performance gains if the programmer does not treat AD as a black box, but instead utilizes high-level knowledge about the nature of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Albada and B. V. Leer. Flux vector splitting and Runge-Kutta methods for the Euler equations, Technical Report84–27, ICASE, 1984.

    Google Scholar 

  2. B. Averick, J. Moré, C. Bischof, A. Carle, and A. Griewank. Computing large sparse Jacobian matrices using automatic differentiation, SIAM Journal on Scientific Computing, 15(2):285–294, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Y. Azmy. Post-convergence automatic differentiation of iterative schemes, Nuclear Science and Engineering, 125:12–18, 1997.

    Google Scholar 

  4. S. Balay, W. Gropp, L. C. McInnes, and B. Smith. PETSc 2.0 users manual, Technical Report ANL-95/11 - Revision 2.0.17, Argonne National Laboratory, Oct. 1996.

    Google Scholar 

  5. C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic differentiation of Fortran 77 programs, IEEE Computational Science & Engineering, 3(3):18–32, 1996.

    Article  Google Scholar 

  6. C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland. ADIFOR 2.0 user’s guide (Revision C), Technical Memorandum ANL/MCS-TM-192, Mathematics and Computer Science Division, Argonne National Laboratory, 1995.

    Google Scholar 

  7. C. Faure. Splitting of algebraic expressions for automatic differentiation, In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Computational Differentiation: Techniques, Applications, and Tools, SIAM, 117–128, Philadelphia, PA, 1996.

    Google Scholar 

  8. A. Griewank. On automatic differentiation, In Mathematical Programming: Recent Developments and Applications, Kluwer Academic Publishers, 83–108, Amsterdam, 1989.

    Google Scholar 

  9. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software, Automatic Differentiation and Navier-Stokes Computations 1(1):35–54, 1992.

    Google Scholar 

  10. A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. Derivative convergence of iterative equation solvers, Optimization Methods and Software, 2:321–355, 1993.

    Article  Google Scholar 

  11. P. Hovland, C. Bischof, D. Spiegelman, and M. Casella. Efficient derivative codes through automatic differentiation and interface contraction: An application in biostatistics, SIAM Journal on Scientific Computing,18(4):1056–1066, July 1997.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Juedes. A taxonomy of automatic differentiation tools. In A. Griewank and G. Corliss, editors, Proceedings of the Workshop on Automatic Differentiation of Algorithms: Theory, Implementation, and Application, SIAM, 315–330, Philadelphia, PA, 1991.

    Google Scholar 

  13. V. Korivi, L. Sherman, A. Taylor, G. Hou, L. Green, and P. Newman. First-and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods. In Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94–4262, American Institute of Aeronautics and Astronautics, 87–120, 1994.

    Google Scholar 

  14. B. Mohammadi. CFD with NSC2KE: an user guide, Technical Report 164, INRIA, 1994.

    Google Scholar 

  15. B. Mohammadi. A new optimal shape design procedure for inviscid and viscous turbulent flows, International Journal for Numerical Methods in Fluids, 25:183–203, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Osher and F. Solomon. Upwind difference schemes for the hyperbolic systems of conservation laws, Mathematics of Computation, 38(158):339–374, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.L. Roe. Approximate Riemann solvers, parameters vectors and difference schemes, Journal of Computational Physics, 43, 1981.

    Google Scholar 

  18. N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in Odyssee. Tellus, 45a(5):558–568, October 1993.

    Google Scholar 

  19. Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7:856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Struijs, H. Deconinck, P. de Palma, P. Roe, and G.G. Powel. Progress on multidimensional upwind euler solvers for unstructured grids. AIAA paper 91–1550, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hovland, P., Mohammadi, B., Bischof, C. (1998). Automatic Differentiation and Navier-Stokes Computations. In: Borggaard, J., Burns, J., Cliff, E., Schreck, S. (eds) Computational Methods for Optimal Design and Control. Progress in Systems and Control Theory, vol 24. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1780-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1780-0_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7279-3

  • Online ISBN: 978-1-4612-1780-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics