Skip to main content

Sensitivities in Computational Methods for Optimal Flow Control

  • Chapter
Computational Methods for Optimal Design and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 24))

Abstract

Flow optimization and control problems have the typical structure of all such problems. Their description involves

state variables: ø=velocity, pressure, density, internal energy, temperature, etc.;

control variables or design parameters: g = velocity on the boundary, heat flux on the boundary, parameters that determine the shape of the boundary, etc.;

objective,or cost,functional: J(ø,g); and

constraints: F(ø,g)=0, i.e., the flow equations; \( \wedge (\emptyset ) = 0 \) side constraints.

This research was partially supported by the Air Force Office of Scientific Research under AFOSR/DARPA MURI Grant Number F49620–95–1–0407.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Appel. Sensitivity Calculations for Conservation Laws with Application to Discontinuous Fluid Flows, Ph.D. Thesis, Virginia Tech, Blacksburg, 1997.

    Google Scholar 

  2. J. Appel, A. Godfrey, M. Gunzburger and E. Cliff. Optimization-based design in high-speed flows, CFD for Design and Optimization,FED-232, 6168, ASME, New York, 1995.

    Google Scholar 

  3. M. Applebaum and R. Walters. UCFD, An Unstructured Computational Fluid Dynamics Package, Virginia Tech, Blacksburg, 1995.

    Google Scholar 

  4. C. Bischof, A. Carle, P. Khademi, A. Mauer and P. Hovland. ADIFOR 2.0 User’s Guide, Center for Research on Parallel Computation, Technical Report CRPC-95516-S, August, 1995.

    Google Scholar 

  5. C. Bischof, P. Khademi, A. Mauer and A.Carle. Adifor 2.0: automatic differentiation of Fortran 77 programs, Computational Science and Engineering 3:18–32, 1996.

    Article  Google Scholar 

  6. C. Bischof, W. Jones, A. Mauer, and J. Samareh. Application of automatic differentiation to 3-D volume grid generation software, CFD for Design and Opti mization,FED-232, 17–22, ASME, New York, 1995.

    Google Scholar 

  7. J. Borggaard. The Sensitivity Equation Method for Optimal Design, Ph.D. Thesis, Virginia Tech, Blacksburg, 1994.

    Google Scholar 

  8. J. Borggaard, J. Burns, E. Cliff and M. Gunzburger. Sensitivity calculations for a 2D, inviscid, supersonic forebody problem, Identification and Control of Systems Governed by Partial Differential Equations, Ed. by H. T. Banks, et al., SIAM. Philadelphia, PA, 1993.

    Google Scholar 

  9. J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, 1983.

    MATH  Google Scholar 

  10. J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail, Comm. ACM, 30:403–407, 1987.

    Article  Google Scholar 

  11. D. Gay. Algorithm 611 subroutines for unconstrained minimization using a model/ trust-region approach, ACM Trans. Math. Soft. 9:503–524, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. LeVeque. Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1991.

    Google Scholar 

  13. R. LeVeque and C. Zhang. The immersed interface method for acoustic wave equations with discontinuous coefficients, to appear in Wave Motion.

    Google Scholar 

  14. H. Liepmann and A. Roshko. Elements of Gas Dynamics, Wiley, New York, 1965.

    Google Scholar 

  15. G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comp. Phys., 27:1–31, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Strang. On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5:506–517, 1968.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gunzburger, M. (1998). Sensitivities in Computational Methods for Optimal Flow Control. In: Borggaard, J., Burns, J., Cliff, E., Schreck, S. (eds) Computational Methods for Optimal Design and Control. Progress in Systems and Control Theory, vol 24. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1780-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1780-0_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7279-3

  • Online ISBN: 978-1-4612-1780-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics