Advertisement

Optimal Disturbances in Boundary Layers

  • Paul Andersson
  • Martin Berggren
  • Dan Henningson
Part of the Progress in Systems and Control Theory book series (PSCT, volume 24)

Abstract

Streamwise streaks are ubiquitous in transitional boundary layers, particularly when subjected to free-stream turbulence. Using the steady boundary-layer approximation, we numerically calculate the upstream disturbances experiencing maximum spatial energy growth. The calculations use techniques commonly employed when solving optimal-control problems for distributed parameter systems. The calculated optimal disturbances consist of streamwise vortices developing into streamwise streaks. The maximum possible energy growth was found to scale linearly with the distance from the leading edge. Based on this result, we propose a simple model for prediction of transition location. Available experiments have been used to correlate the single constant appearing in the model.

Keywords

Boundary Layer Streamwise Vortex Distribute Parameter System Downstream Position Optimal Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Arnal. Transition description and prediction, in O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill and T.V. Truong, editors, Numerical simulation of unsteady flows and transition to turbulence, 303–316. Cambridge University Press, 1992.Google Scholar
  2. [2]
    M. Berggren. Optimal Control of Time Evolution Systems: Controllability Investigations and Numerical Algorithms, Ph. D. thesis, Department of Computational and Applied Mathematics, Rice University, Houston, Tx 77251–1892, 1995.Google Scholar
  3. [3]
    M. Berggren, R. Glowinski and J. L. Lions. A computational approach to controllability issues for flow-related models, (II): Control of two-dimensional, linear advection-diffusion and Stokes models. International Journal of Computational Fluid Dynamics, 6(4):253–274, 1996.CrossRefGoogle Scholar
  4. [4]
    M. Berggren, R. Glowinski and J. L. Lions. A computational approach to controllability issues for flow-related models, (I): Pointwise control of the viscous Burgers equation. International Journal of Computational Fluid Dynamics, 7:237–252, 1996.MATHCrossRefGoogle Scholar
  5. [5]
    F. P. Bertolotti. Response of the Blasius boundary layer to free-stream vorticity, Phys. Fluids, 9(8):2286–2299, 1997.CrossRefGoogle Scholar
  6. [6]
    K. M. Butler and B. F. Farrell. Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 4:1637–1650, 1992.CrossRefGoogle Scholar
  7. [7]
    G. Chavent. Identification of distributed parameter systems: About the output least square method, its implementation, and identifiability, In R. Iserman, editor, Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, 1, 85–97. Pergamon Press, 1979.MathSciNetGoogle Scholar
  8. [8]
    T. Ellingsen and E. Palm. Stability of linear flow, Phys. Fluids, 18:487–488, 1975.MATHCrossRefGoogle Scholar
  9. [9]
    J. M. Floryan and W. S. Saric. Stability of Görtler vortices in boundary layers with suction, AIAA 12-th Fluid and Plasma Dynamics Conf., Williamsburg. AIAA Paper 79–1479, 1979.Google Scholar
  10. [10]
    J. M. Floryan and W. S. Saric. Stability of Görtler vortices in boundary layers, AIAA J., 20:316–324, 1982.MathSciNetMATHGoogle Scholar
  11. [11]
    R. Glowinski and J. L. Lions. Exact and approximate controllability for distributed parameter systems (Part I), Acta Numerica, 269–378, 1994.Google Scholar
  12. [12]
    R. Glowinski and J. L. Lions. Exact and approximate controllability for distributed parameter systems (Part II). Acta Numerica, 159–333, 1995.Google Scholar
  13. [13]
    L. H. Gustaysson. Energy growth of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech., 224:241–260, 1991.CrossRefGoogle Scholar
  14. [14]
    P. Hall. The linear development of Görtler vortices in growing boundary layers, J. Fluid Mech., 130:41–59, 1983.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    A. Hanifi, P. J. Schmid and D. S. Henningson. Transient growth in compressible boundary layer flow, Phys. Fluids, 8(3):826–837, 1995.MathSciNetCrossRefGoogle Scholar
  16. [16]
    D. S. Henningson, A. Lundbladh and A. V. Johansson. A mechanism for bypass transition from localized disturbances in wall bounded shear flows, J. Fluid Mech., 250:169–207, 1993.MATHCrossRefGoogle Scholar
  17. [17]
    L. S. Hultgren and L. H. Gustaysson. Algebraic growth of disturbances in a laminar boundary layer, Phys. Fluids, 24:1000–1004, 1981.MATHCrossRefGoogle Scholar
  18. [18]
    J. M. Kendall. Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence, AIAA Paper 85–1695,1985.Google Scholar
  19. [19]
    J. M. Kendall. Boundary layer receptivity to freestream turbulence, AIAA Paper 90–1504, 1990.Google Scholar
  20. [20]
    P. S. Klebanoff, K. D. Tidstrom and L. M. Sargent. The three-dimensional nature of boundary layer instability, J. Fluid Mech., 12:1–34, 1962.MATHCrossRefGoogle Scholar
  21. [21]
    M. T. Landahl. Dynamics of boundary layer transition and the mechanism of drag reduction, Phys. Fluids, 20(10, Part II), 555–563, 1977.CrossRefGoogle Scholar
  22. [22]
    M. T. Landahl. A note on an algebraic instability of inviscid parallel shear flows, J. Fluid Mech., 98:243–251, 1980.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.Google Scholar
  24. [24]
    P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat plate surface, J. Fluid Mech., 327:101–115, 1996.MATHCrossRefGoogle Scholar
  25. [25]
    P. Luchini. Reynolds-number-independent instability of the boundary layer over a flat plate surface. part 2: Optimal perturbations, Submitted to J. Fluid Mech, 1997.Google Scholar
  26. [26]
    R. Luchini and A. Bottaro. Görtler vortices: a backward-in-time approach to the receptivity problem, 49th annual meeting of the American Physical Society—Division of Fluid Dynamics, Syracuse N.Y., 24–26 Nov. 1996; abstract in Bulletin of the American Physical Society 41, 1788 (1996); full text submitted for publication, 1996.Google Scholar
  27. [27]
    M. Matsubara. Private Communications, 1997.Google Scholar
  28. [28]
    A. W. Naylor and G. R. Sell. Linear Operator Theory in Engineering Science, Springer-Verlag, New York, 1982.MATHGoogle Scholar
  29. [29]
    S. C. Reddy and D. S. Henningson. Energy growth in viscous channel flows, J. Fluid Mech., 252:209–238, 1993.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    P. E. Roach and D. H. Brierley. The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development. Part I: Test cases T3A and T3B, In O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill and T.V. Truong, editors, Numerical simulation of unsteady flows and transition to turbulence, 303–316. Cambridge University Press, 1992.Google Scholar
  31. [31]
    L. N. Trefethen, A. E. Trefethen, S. C. Reddy and T. A. Driscoll. Hydrodynamic stability without eigenvalues, Science, 261:578–584, 1993.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    E. R. van Driest and C. B Blumer. Boundary layer transition: Freestream turbulence and pressure gradient effectsAIAA J., 1:1303–1306, 1963.MATHCrossRefGoogle Scholar
  33. [33]
    K. J. A. Westin, A. V. Boiko, B. G. B. Klingmann, V. V. Kozlov and P. H. Alfredsso Experiments in a boundary layer subject to free-stream turbulence. Part I: Boundary layer structure and receptivityJ. Fluid Mech.,281:193218, 1994.Google Scholar
  34. [34]
    Z. Y. Yang and P. R. Voke. Numerical simulation of transition under turbulence, Technical Report ME-FD/91.01, Dept. Mech. Eng., University of Surrey, 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul Andersson
    • 1
    • 2
  • Martin Berggren
    • 2
  • Dan Henningson
    • 1
    • 2
  1. 1.Department of MechanicsRoyal Institute of TechnologyStockholmSweden
  2. 2.FFA, the Aeronautical Research Institute Sweden Computational Aerodynamics DepartmentBrommaSweden

Personalised recommendations