Skip to main content

On a Quantum Version of Pieri’s Formula

  • Chapter
Advances in Geometry

Part of the book series: Progress in Mathematics ((PM,volume 172))

Abstract

We give an algebro-combinatorial proof of a general version of Pieri’s formula following the approach developed by Fomin and Kirillov in the paper “Quadratic algebras, Dunkl elements, and Schubert calculus.” We prove several conjectures posed in their paper. As a consequence, a new proof of classical Pieri’s formula for cohomology of complex flag manifolds, and that of its analogue for quantum cohomology is obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaceG/P Russian Math. Surveys 28(1973), 1–26.

    Article  MATH  Google Scholar 

  2. A. Borel, Sur la cohomologie de espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math.(2)57(1953), 115–207.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Ciocan-Fontanine, Quantum cohomology of flag varietiesIntern. Math. Research Notes(1995), No.6263–277.

    Article  MathSciNet  Google Scholar 

  4. I. Ciocan-Fontanine, On quantum cohomology rings or partial flag varieties, preprint dated February 9, 1997.

    Google Scholar 

  5. M. Demazure, Désingularization des variétés de Schubert généraliséesAnn. Scient. Ecole Normale Sup.(4)7(1974), 53–88.

    MathSciNet  MATH  Google Scholar 

  6. C. Ehresmann, Sur la topologie de certains espaces homogènesAnn. Math. 35(1934), 396–443.

    Article  MathSciNet  Google Scholar 

  7. S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomialsJ. Amer. Math. Soc. 10(1997), 565–596.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, preprint AMSPPS #199703–05–001.

    Google Scholar 

  9. W. Fulton and R. Pandharipande, Notes on stable maps and quan-tum cohomology, preprint alg-geom/9608011.

    Google Scholar 

  10. A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda latticesComm. Math. Phys. 168(1995), 609–641.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Kimy, Quantum cohomology of flag manifoldsG/Band quantum Toda lattices, preprint alg-geom/9607001.

    Google Scholar 

  12. A. Lascoux and M. P. Schützenberger, Polynômes de SchubertC. R. Ac. Sci. 294(1982), 447–450.

    MATH  Google Scholar 

  13. I. G. MacdonaldNotes on Schubert polynomialsPublications du LACIM, Montréal, 1991.

    Google Scholar 

  14. D. Monk, The geometry of flag manifoldsProc. London Math. Soc.(3)9(1959), 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Sottile, Pieri’s formula for flag manifolds and Schubert polyno-mialsAnnales de l’Institut Fourier 46(1996), 89–110.

    MathSciNet  MATH  Google Scholar 

  16. R. Winkel, On the multiplication of Schubert polynomials, preprint dated January 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Postnikov, A. (1999). On a Quantum Version of Pieri’s Formula. In: Brylinski, JL., Brylinski, R., Nistor, V., Tsygan, B., Xu, P. (eds) Advances in Geometry. Progress in Mathematics, vol 172. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1770-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1770-1_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7274-8

  • Online ISBN: 978-1-4612-1770-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics