A Rigidity Property for Quantum SU(3) Groups

  • Gabriel Nagy
Part of the Progress in Mathematics book series (PM, volume 172)

Abstract

Quantum groups were introduced by Drinfeld in the mid 80’s (see [4]). Originally these objects were studied in connection with the inverse scattering problem. Later quantum groups became interesting objects in themselves and today make up a distinct field in mathematics.

Keywords

Manifold Prefix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    B. BlackadarK-theory for operator algebrasSpringer Verlag, 1986MATHCrossRefGoogle Scholar
  2. [2]
    K. BragielThe twisted SU(N) On the C*-algebra C(SU μ (N)Letters. Math. Phys.20(1990), 251–157MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    J. DixmierC*-algebrasNorth Holland, 1977Google Scholar
  4. [4]
    V. DrinfeldQuantum Croups I.C.M.Berkeley, 1986Google Scholar
  5. [5]
    H.T. KoelinkOn *-representations of the Hopf *-algebra associated with the quantum group U q (N)Compositio Math.77(1991), 199–231MathSciNetMATHGoogle Scholar
  6. [6]
    S. Levendorskii, Ya. SoibelmanAlgebras of functions on compact quantum groups Schubert cells and quantum toriComm Math. Phys.139(1991), 141–170.MathSciNetCrossRefGoogle Scholar
  7. [7]
    G. NagyOn the Haar measure of quantum SU(N) groupsComm Math. Phys.153(1993), 217–228MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    G. NagyA framework for deformation quantizationPh.D. thesis, University of California, Berkeley, 1992.Google Scholar
  9. [9]
    G. NagyDeformation quantization and K-theorypreprint 1996Google Scholar
  10. [10]
    G. Nagy, A. NicaOn the “quantum disk” and a “non-commutative circle”Algebraic Methods in Operator Theory (R. Curto and P. E. T. Jorgensen eds.), Birkhäuser, 1994, 276–290CrossRefGoogle Scholar
  11. [11]
    M. Pimsner, S. Popa, D. VoiculescuHomogeneous C*-extensions of \(C(X) \otimes K \) I, J.Operator.Theory 1 (1979), 55–108; II, ibid.4(1980), 211–249MathSciNetMATHGoogle Scholar
  12. [12]
    M. A. RieffelQuantization and C*-algebrasC*-algebras 1943–1993: A 50 year celebration (R. Doran ed) Contemp. Math.167(1994), Amer. Math. Soc., Providence RI, 66–97Google Scholar
  13. [13]
    A. J.-L. SheuThe structure of twisted SU(3) groupsPacific J. Math151(1991), 307–315MathSciNetMATHGoogle Scholar
  14. [14]
    A. J.-L. SheuCompact quantum groups and groupoid C*-algebraspreprint 1995Google Scholar
  15. [15]
    Ya. SoibelmanIrreducible representations of the function algebra on the quantum SU(n) and Schubert cellsSoviet. Math. Dokl.40(1990), 34–38MathSciNetMATHGoogle Scholar
  16. [16]
    Ya. SoibelmanThe algebra of functions on a compact quantum group and its representationsLeningrad Math. J.2(1990), 161–178MathSciNetGoogle Scholar
  17. [17]
    L. Vaksman, Ya SoibelmanAlgebra of functions on quantum SU(2)Funkt. Anal. i ego Priloz.22(1988), 1–14MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    S.L. WoronowiczTwisted SU(2) group. An example of non-commutative differential calculusPubl. RIMS32(1987), 117–181MathSciNetCrossRefGoogle Scholar
  19. [19]
    S.L. WoronowiczCompact matrix pseudogroupsComm. Math. Phys.111(1987), 613–665MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    S.L. WoronowiczTannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groupInvent. Math.93(1988), 35–76MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gabriel Nagy
    • 1
  1. 1.Department of MathematicsKansas State UniversityManhattanUSA

Personalised recommendations