Skip to main content

Non-Parametric Forecasting Techniques for Mixing Chaotic Time Series

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We consider mixing chaotic time series and present two prediction methods for such systems. The methods we develop are the Nearest Neighbors method and the Radial Basis Functions method. We discuss the optimal prediction horizon according to the sampling time step. We also discuss a reliable method measuring the prediction error. We illustrate our results with simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bowen. Bernouilli maps of an interval. Israel J. Math., 28:298–314, 1982.

    MathSciNet  Google Scholar 

  2. M. Delecroix, D. Guégan, and G. Léorat. Determining Lyapunov Exponents in Deterministic Dynamical Systems. Computational Statistics 12:93–107, 1997.

    MathSciNet  MATH  Google Scholar 

  3. M. Denker and G. Keller. Rigourous statistical procedures for data from dynamical systems. Journ. of Stat. Physics, 44:67–93, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. X. Diebold and R. S. Mariano. Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13 253–263, 1995.

    Google Scholar 

  5. J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57:617, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. D. Farmer and J. J. Sidorowich. Predicting chaotic time series. Physical Review Letters 59:845–848, 1987.

    Article  MathSciNet  Google Scholar 

  7. J. D. Farmer and J. J. Sidorowich. Exploiting chaos to predict the future and reduce noise. Evolution, Learning, and Cognition, ed. Y. C. Lee, World Scientific, Singapore, pp. 277, 1988.

    Google Scholar 

  8. B. Finkenstadt and P. Kuhbier. Forecasting nonlinear economic time series: A simple test to accompany the nearest neighbor approach. Empirical Economics 20:243–263, 1995.

    Article  Google Scholar 

  9. J. Geweke. Inference and forecasting for deterministic nonlinear time series observed with measurement error. Preprint, 1988.

    Google Scholar 

  10. D. Guégan. How can noise be brought out in dynamical chaos. Proceedings of the Workshop: Methods of Non Equilibrium Processes in Economics and Environment Sciences, Matrafured (Hungary), 1996.

    Google Scholar 

  11. D. Guégan. Stochastic versus deterministic systems. Working Paper INSEE 9438, 1994.

    Google Scholar 

  12. D. Guégan and G. Léorat. What is the good identification theory for noisy chaos. Working Paper INSEE 9619, 1996.

    Google Scholar 

  13. D. Guégan and L. Mercier. Rising and falling prediction in financial intra-day data. Proceedings of the 3rd International Conference Sponsored by Chemical Bank and Imperial College: Forecasting financial markets, 1996.

    Google Scholar 

  14. D. Guégan and L. Mercier. Methods and Comparisons Using Simulations. To appear in Signal Processing, 1997.

    Google Scholar 

  15. D. Guégan and L. Mercier. Predictions for financial data using chaotic methods. To appear in the European Journal of Finance.

    Google Scholar 

  16. F. Hofbauer and G. Keller. Ergodic properties of invariant measures for piecewuse monotonic transformations. Math. Z., 180:119–140, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Lasota and J. Yorke. Asymptotic periodicity of the iterates of Markov operators. Trans. Am. Math. Soc., 286:751–764,1984.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Lasota and Mackay. Chaos, Fractals and Noise. Springer-Verlag, 1987.

    Google Scholar 

  19. B. Lebaron and A. S. Weigend. Evaluating neural network predictors by bootstrapping. Preprint, 1995.

    Google Scholar 

  20. B. Lillekjendlie, D. Kugiumtzis, and N. Christophersen. Chaotic time series: System identification and prediction. Preprint, 1994.

    Google Scholar 

  21. F. Lisi, O. Nicolis, and M. Sandri. Combining Singular-Spectrum Analysis and neural networks for time series forecasting. Neural Processing Letters, 2(4):6–10, 1995.

    Article  Google Scholar 

  22. D. H. Mayer. Approach to equilibrium for locally expanding maps in R k. Comm. Math. Phy., 95:1–5, 1984.

    Article  MATH  Google Scholar 

  23. L. Mercier. Séries temporelles chaotiques appliquées à la finance. Thèse de doctorat Paris IX, 1998.

    Google Scholar 

  24. K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  25. J. Scheinkman and B. LeBaron. Nonlinear Dynamics and Stock Returns. J. of Business, 311-337, 1989.

    Google Scholar 

  26. L. A. Smith. Identification and prediction of low dimensional dynamics. Physica D, 58:50–76, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Stokbro and D. K. Umberger. Forecasting with weighed maps. Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, eds., Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  28. G. Sugihara and R. M. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734–741, 1990.

    Article  Google Scholar 

  29. F. Takens. Detecting strange attractors. Dynamical Systems and Turbulence, Lecture Notes in Mathematics 898:366–381,1981.

    MathSciNet  Google Scholar 

  30. S. Wong. A central limit theorem for piecewise monotonic mappings of the unit interval. Ann. of Probab., 7:500–514, 1979.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guégan, D., Mercier, L. (1998). Non-Parametric Forecasting Techniques for Mixing Chaotic Time Series. In: Procházka, A., Uhlíř, J., Rayner, P.W.J., Kingsbury, N.G. (eds) Signal Analysis and Prediction. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1768-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1768-8_25

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7273-1

  • Online ISBN: 978-1-4612-1768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics