Skip to main content

Modeling of the Effects of Aortic Valve Stenosis and Arterial System Afterload on Left Ventricular Hypertrophy

  • Chapter
  • 110 Accesses

Abstract

Ventricular hypertrophy is an important adaptive mechanism that occurs in disorders associated with pressure or volume overload of the left ventricle. Hypertrophy of the cardiac muscle is defined as an increase in the size of existing myocardial fibers (15). The pressure-overload—induced hypertrophy, which is usually observed in valvular, subvalvular, or supravalvular aortic stenosis and in arterial hypertension, would cause concentric hypertrophy. In this case, the increase in left ventricular mass is associated with a normal-sized left ventricular internal cavity and is characterized by an increase in the ventricular wall thickness-to-diameter ratio. The severity of aortic valve stenosis is assumed to reflect the degree of left ventricular hypertrophy, while increased blood pressure also compounds this process. There are many studies attempting to correlate the left ventricular mass and wall thickness to blood pressure andJor the Gorlin formula derived valve area. However, because of associated confounding factors, the role that the arterial system plays when coexisting with aortic valve stenosis remains unclear. In this chapter, we present an interactive model that affords examinations of the individual effect of blood pressure and aortic valve in the development of a hypertrophic ventricle, as well as the combined effects of coexisting aortic valve stenosis and hypertension, that is, when a stenotic aortic valve and hypertension impose a double load on the left ventricle.

Keywords

  • Left Ventricle
  • Aortic Valve
  • Left Ventricular Hypertrophy
  • Aortic Stenosis
  • Left Ventricular Mass

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1744-2_9
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1744-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronow WS, Kronzon I. Prevalence ans severity of valvular aortic stenosis determined by Doppler echocardiography and its association with echocardio-graphic and electrocardiographic left ventricular hypertrophy and physical signs of aortic stenosis in elderly patients. Am J Cardiol 1991;67:776–777.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Carabello BA, Zile MR, Tanaka R, Cooper GIV. Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol 1992;263:H1137–1144.

    PubMed  CAS  Google Scholar 

  3. Danielsen R, Nordrehaug JE, Vik-Mo H. Clinical and haemodynamic features in relation to severity of aortic stenosis in adults. Eur Heart J. 1991;12:791–795.

    PubMed  CAS  Google Scholar 

  4. Ford LE, Feldman T, Chiu YC, Caroll JD. Hemodynamic resistance as a measure of functional impairment in aortic valvular stenosis. Circ Res. 1990;66:1–7.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Ilercil A, Zhu Y, Wu J, Li JK-J, Lee M, Nanna M. Computer model prediction of left ventricular hypertrophy based on the concept of a double loaded ventricle. J Am Soc Echocardiogr. 1995:8:383.

    Google Scholar 

  6. Kimball TR, Daniels SR, Loggie JMH, Khoury P, Meyer RA. Relation of left ventricle mass, preload, afterload and contractility in pediatric patients with essential hypertension. J Am Coll Cardiol 1993;21:997–1001.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Li JK-J. Arterial System Dynamics. New York: New York University Press; 1987.

    Google Scholar 

  8. Li JK-J. Comparative cardiac mechanics: Laplace’s Law. J Theor Biol. 1986;118: 339–343.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Li JK-J, Cui T, Drzewiecki G. A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng. 1990; BME-37:673–678.

    CrossRef  Google Scholar 

  10. Li JK-J. Feedback effects in heart-arterial system interaction. Adv Expl Med Biol. 1993;346:325–333.

    CrossRef  CAS  Google Scholar 

  11. Li JK-J, Zhu Y. Aging induced changes in arterial compliance and vascular resistance and its relation to systolic hypertension. Am J Hypertens. 1994;7:87 A.

    Google Scholar 

  12. Li JK-J, Zhu Y. Arterial compliance and its pressure-dependence in hypertension and vasodilation. AngiolJ Vasc Dis. 1994;45:113–117.

    CAS  Google Scholar 

  13. Li JK-J, Zhu Y, Drzewiecki G. Systemic arterial compliance dependence on blood pressure: Global effects. J Cardiovasc Diagn Proc. 1996;13:300.

    Google Scholar 

  14. Mensah GA, Pappas TW, Koren MJ, Ulin RI, Laragh JH, Devereux RB. Comparison of classification of the severity of hypertension by blood pressure level and by World Health Organization criteria in the prediction of concurrent cardiac abnormalities and subsequent complications in essential hypertension. J Hypertens. 1993;7:1429–1440.

    CrossRef  Google Scholar 

  15. Panidis JP, Kotier MN, Ren JF, Mintz GS, Ross J, Kaiman P. Development and regression of left ventricular hypertrophy. J Am Coll Cardiol 1984;3(5):1309–1320.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Reichek N, Devereux RB. Reliable estimation of peak left ventricular systolic pressure by M-mode echocardiographic-determined end-diastolic relative wall thickness. Am Heart J. 1982;103:202–209.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Schwartz A, Vignola PA, Kalker HJ, King ME, Goldblatt A. Echocardiographic estimation of aortic valve gradient in aortic stenosis. Ann Intern Med. 1978;89:329–335.

    PubMed  CAS  Google Scholar 

  18. Schwartzkopff R, Frenzel H, Dieckerhoff J, Betz P, Flasshove M, Schulte HD, Mundhenke M, Motz W, Strauer BE. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J. 1992;13(Suppl D):17–23.

    PubMed  CrossRef  Google Scholar 

  19. Zhu Y, Nanna M, Li JK-J. Effects of combined arterial system load and aortic valve stenosis on left ventricular hypertrophy: A model based study. J Cardiovasc Diagn Proc. 1994;12:115.

    Google Scholar 

  20. Zhu Y, Computer Based Analysis of Systolic/Diastolic Left Ventricular Function and Pressure-Dependent Arterial Compliance. NJ: New Brunswick Rutgers University, NJ; 1996. Ph.D. Dissertation.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J.KJ., Zhu, Y., Nanna, M. (1998). Modeling of the Effects of Aortic Valve Stenosis and Arterial System Afterload on Left Ventricular Hypertrophy. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive