Skip to main content

Abstract

Despite years of innovative experimentation and the development of numerous models of the coronary circulation, controversy remains over the fundamental mechanisms underlying coronary vascular perfusion. The fundamental reason for this is the inaccessibility of the intramyocardial vessels to direct measurement. The coronary circulation is thus a prime candidate for physiological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borg TK, Caulfield JB. The collagen matrix of the heart. Federation Proc. 1981;40:2037–2041.

    CAS  Google Scholar 

  2. Bouma P. Coronary blood flow and contraction. Amsterdam: Free University of Amsterdam; 1991. Dissertation.

    Google Scholar 

  3. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975;36:753–760.

    Article  PubMed  CAS  Google Scholar 

  4. Flynn AE, Coggins DL, Goto M, Aldea GS, Austin RE, Doucette JW, Husseini W, Hoffman JIE. Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am J Physiol. 1992;262:H1759–H1769.

    PubMed  CAS  Google Scholar 

  5. Frasch HF. Interpretation of coronary circulatory perfusion. Philadelphia: University of Pennsylvania, 1993 (University Microfilms International No. 9413831). Dissertation.

    Google Scholar 

  6. Frasch HF, Kresh JY, Noordergraaf A. Wave transmission and input impedance of a model of skeletal muscle microvasculature. Ann Biomed Eng. 1994; 22:45–57.

    Article  PubMed  CAS  Google Scholar 

  7. Frasch HF, Kresh JY, Noordergraaf A. Two-port analysis of microcirculation: An extension of Windkessel. Am J Physiol. 1996;270:H376–H385.

    PubMed  CAS  Google Scholar 

  8. Fung YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag; 1981.

    Google Scholar 

  9. Hanley FL, Messina LM, Gratten MT, Hoffman JIE. The effect of coronary inflow pressure on coronary vascular resistance in the isolated dog heart. Circ Res. 1984;54:760–772.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffman JIE, Spaan JAE. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70:331–390.

    PubMed  CAS  Google Scholar 

  11. Izrailtyan I, Frasch HF, Kresh JY. Effects of venous pressure on coronary circulation and intramyocardial fluid mechanics. Am J Physiol. 1994;267: H1002–H1009.

    PubMed  CAS  Google Scholar 

  12. Kajiya F, Tsujioka K, Goto M, Wada Y, Chen X-L, Nakai M, Tadaoka S, Hiramatsu O, Ogasawara Y, Mito K, Tomonaga G. Functional characteristics of intramyocardial capacitance vessels during diastole in the dog. Circ Res. 1986;58:476–485.

    Article  PubMed  CAS  Google Scholar 

  13. Kassab GS. Morphometry of the coronary vasculature in the pig. La Jolla: University of California, San Diego; 1990. Dissertation.

    Google Scholar 

  14. Katz SA, Feigl EO. Systole has little effect on diastolic coronary artery blood flow. Circ Res. 1988;62:443–451.

    Article  PubMed  CAS  Google Scholar 

  15. Kresh JY. Intramyocardial mechanical states: Vessel-interstitium-muscle interface. In: Sideman S, Beyar R, eds. Interactive Phenomena in the Cardiac System. New York: Plenum; 1994, Chap. 12.

    Google Scholar 

  16. Olsson RA, Bugni WJ. Coronary circulation. In: Fozzard HA, ed. The Heart and Cardiovascular System. New York: Raven Press; 1986:987–1037.

    Google Scholar 

  17. Rabbany SY, Kresh JY, Noordergraaf A. Intramyocardial pressure: Interaction of myocardial fluid pressure and fiber stress. Am J Physiol. 1989;257:H357–H364.

    PubMed  CAS  Google Scholar 

  18. Spaan JAE. Coronary blood flow: Mechanics, distribution, and control. Dordrecht: Kluwer; 1991.

    Book  Google Scholar 

  19. Tomoike H, Ootsubo H, Sakai K, Kikuchi T, Nakamura M. Continuous measurement of coronary artery diameter in situ. Am J Physiol. 1981;240:H73–H79.

    PubMed  CAS  Google Scholar 

  20. Wüsten B, Buss DD, Deist H, Schaper W. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol. 1977;72:636–650.

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frasch, H.F., Kresh, J.Y., Noordergraaf, A. (1998). Interpretation of Coronary Vascular Perfusion. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics