Skip to main content

Computer-Based Myocardial Tissue Characterization Using Quantitative Description of Texture

  • Chapter
  • 101 Accesses

Abstract

Ultrasound images are formed through the interaction between the ultrasonic waves and the body tissue. The propagation of the ultrasound waves through different tissues, their reflection, dispersion, and absorption are primarily determined by the mechanical properties of the tissue. Therefore, the visual representation of the received signal contains the information about the tissue structure and composition, and ultrasound tissue characterization could be a promising new technique for evaluation of patients with coronary artery disease.

Keywords

  • Wavelet Decomposition
  • Gray Level Cooccurrence Matrix
  • Infarcted Segment
  • Fourier Power Spectrum
  • Gray Level Intensity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1744-2_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1744-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aylward PE, McPherson DD, Kerber RE, Skorton D, Collins M. Ultrasonic tissue characterization in coronary artery disease. In: Kerber R, ed. Echochar-diography in Coronary Artery Disease. New York: Futura; 1988:509–531.

    Google Scholar 

  2. Chang T, Kuo C. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans Image Processing. 1993;2:429–441.

    CrossRef  CAS  Google Scholar 

  3. Chellappa R. Two dimensional discrete Gaussian Markov random field models for image processing. Pattern Recognition. 1985;2:79–112.

    Google Scholar 

  4. Chen C, Daponte J, Fox M. Fractal feature analysis and classification in medical imaging. IEEE Trans Med Imaging. 1989;6:133–142.

    CrossRef  Google Scholar 

  5. Daubechies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics; 1992.

    CrossRef  Google Scholar 

  6. Daubechies I. The Wavelet transform, time-frequency localization, and signal analysis. IEEE Trans Inform Theory. 1990;36:961–1005.

    CrossRef  Google Scholar 

  7. Galloway M. Texture analysis using gray level run lengths. Comput Graphics Image Processing. 1975;4:172–199.

    CrossRef  Google Scholar 

  8. Geiser AE. Applications of automatic edge detection and image enhancement techniques to two-dimensional echocardiography and coronary disease. In: Kerber R, ed. Echochardiography in Coronary Artery Disease. New York: Futura; pp. 483–508,1988.

    Google Scholar 

  9. Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979;67:786–804.

    CrossRef  Google Scholar 

  10. Havlice J, Taenzer J. Medical ultrasonic imaging: An overview of principles and instrumentation. In: Lee H, Wade G, ed. Modern Acoustical Imaging. New York: IEEE Press; 1986:125–146.

    Google Scholar 

  11. Jain AK, Farrokhia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition. 1991;24:1167–1186.

    CrossRef  Google Scholar 

  12. Kashyap RL, Chellappa R. Texture synthesis using 2-D noncausal autoregressive models. IEEE Trans Acoustics Speech Signal Processing. 1985;33:194–203.

    CrossRef  Google Scholar 

  13. Laws KI. Textured Image Segmentation. Los Angeles: Image Processing Institvte, University of Southern California; 1980. Thesis.

    Google Scholar 

  14. Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Machine Intell. 1989;11:674–693.

    CrossRef  Google Scholar 

  15. McPherson DD, Aylward PE, Knosp BM. Ultrasound characterization of acute myocardial ischemia by quantitative texture analysis. Ultrasonic Imaging. 1986; 8:227.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Mojsilović A. Analysis of Ultrasound Images in Cardiology Using Texture Operators. Faculty of Electrical Engineering, Belgrade University, 1994:42–52. Thesis.

    Google Scholar 

  17. MojsiloviĆ A, PopoviĆ A, NeŠkoviĆ A, Amodaj N, PopoviĆ M. Prediction of successful reperfusion after acute myocardial infarction using computer program for myocardial tissue characterization, J Am Coll Cardiol. (special issue) 1995;(Feb.):179A–180A.

    Google Scholar 

  18. MojsiloviĆ A, PopovĆ M, PopoviĆ A, NeŠkoviĆ A, ObradoviĆ V. Analysis and classification of myocardial tissue with the wavelet image extension. Proceedings IEEE International Conference on Image Processing, Vol. 2. Washington DC; 1995:504–507.

    CrossRef  Google Scholar 

  19. Pentland AP. Fractal based description of natural scenes. IEEE Trans Pattern Anal Machine Intell. 1984;6:661–675.

    CrossRef  CAS  Google Scholar 

  20. Trivedi MH, Harlow CA, Conners RW, Goh S. Object detection based on gray level cooccurrence. Comput Vision Graphics Image Processing. 1984;28:199–219.

    CrossRef  Google Scholar 

  21. Unser M. Local linear transforms for texture measurements. Signal Processing. 1986;11:61–79.

    CrossRef  Google Scholar 

  22. Unser M, Eden M. Multiresolution feature extraction and selection for texture segmentation. IEEE Trans Pattern Anal Machine Intelligence. 1989;11:717–728.

    CrossRef  Google Scholar 

  23. Weszka JS, Dryer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern. 1976;6:269–285.

    Google Scholar 

  24. Wu CM, Chen YC, Hsieh KS. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging. 1992;11:141–151.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mojsilović, A., Nešković, A.N., Popović, M., Popović, A.D. (1998). Computer-Based Myocardial Tissue Characterization Using Quantitative Description of Texture. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive