Skip to main content

Modeling Reversible Mechanical Dysfunction in the Stunned Myocardium

  • Chapter
  • 109 Accesses

Abstract

Although the ischemic dysfunction of the heart from coronary artery occlusion was observed before the 20th century, the concept of postischemic myocardial dysfunction was initially described by Vatner’s group in 1975 (33). Until 1982 the term myocardial stunning, related to the phenomenon of postischemic ventricular abnormality, was submitted and first coined by Braunwald and Kloner (11). They stated that the ischemic process may be “hit, run, and stun,”rather than a simple all-or-nothing process in which myocardial necrosis was caused when ischemia was prolonged and severe, but transient when brief or mild. In recent years it has been demonstrated experimentally that the mechanical dysfunction in postischemic or stunned myocardium persists after reperfusion despite the absence of irreversible damage and restoration of normal or near-normal coronary flow (6,7,9,39,60). In the other words, postischemic myocardial dysfunction is a fully reversible abnormality, if the reperfusion period is sufficient (11,14). On the whole, a number of clinical settings are potentially associated with myocardial stunning, including the percutaneous transluminal coronary angioplasty, unstable, variant angina, acute myocardial infarction with early repercussion, exercise-induced ischemia, cardiac surgery, and cardiac transplantation (7).

Keywords

  • Segment Length
  • Stun Myocardium
  • Systolic Wall
  • Left Ventricle Volume
  • Passive Compliance

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1744-2_5
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1744-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaishi M, Weintraub WS, Schneider RM, Klein LW, Agarwal JB, Heifant RH. Analysis of systolic bulging: Mechanical characteristics of acutely ischemic myocardium in the conscious dog. Circ Res. 1986;58:209–217.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Avanzolini G, Barini P, Cappello A, Cevese A. Time-varying mechanical properties of the left ventricle: A computer simulation. IEEE Trans Biomed Eng. 1985;32:756–763.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Bavaria JE, Furukawa S, Kreiner G, Retcliffe MB, Streicher J, Bogen DK, Edmunds LH. Myocardial oxygen utilization after reversible global ischemia. J Thorac Cardiovasc Surg. 1990;100:210–220.

    PubMed  CAS  Google Scholar 

  4. Becker LC, Levine JH, Dipaula AF, Guarnieri T, Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and pos-textrasystolic potentiation. J Am Coll Cardiol 1986;7:580–589.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Bolli R, Zhu W-X, Thornby JI, Neill PGO, Roberts R. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol. 1988;254:H102–H114.

    PubMed  CAS  Google Scholar 

  6. Bolli R. Mechanism of myocardial stunning. Circulation. 1990;82:723–738.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Bolli R. Myocardial stunning in man. Circulation. 1992;86:1671–1691.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (stunned myocardium). J Am Coll Cardiol. 1988;12:239–249.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: Evidence that myocardial stunning is a manifestation of reperfusion injury. Circ Res. 1989;65:607–622.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Bovendeerd PHM, Arts T, Delhaas R, Huyghe JM, Van Campen DH, Reneman RS. Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. Am J Physiol. 1996;270:H398–H410.

    PubMed  CAS  Google Scholar 

  11. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation. 1982;6:1146–1149.

    CrossRef  Google Scholar 

  12. Buffington CW, Coyle RJ. Altered load dependence of postischemic myocardium. Anesthesiology. 1991;75:464–474.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Campbell KB, Kirkpatrick RD, Tobias AH, Taheri H, Shroff SG. Series coupled non-contractile elements are functionally unimportant in the isolated heart. Cardiovasc Res. 1994;28:242–251.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Carlson EB, Hinohara T, Morris KG. Recovery of systolic and diastolic left ventricular function after a 60-second coronary arterial occlusion during percutaneous transluminal coronary angioplasty for angina pectoris. Am J Cardiol. 1987;60:460–466.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Charlat ML, O’Neill PG, Hartley CJ, Roberts R, Bolli R. Prolonged abnormalities of left ventricular diastolic wall thinning in the stunned myocardium in conscious dogs: Time course and relation to systolic function. J Am Coll Cardiol. 1989;13:185–194.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Chen G, Askenase AD, Chen K, Horowitz LN, Segal BL. The contraction of stunned myocardium: Isovolumetric bulging and wasted ejection shortening in dog heart. Cardiovasc Res. 1992;26:115–125.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Chiu WC, Kedem J, Scholz PM, Wiess HR. Regional asynchrony of segmental contraction may explain the“oxygen consumption paradox”in stunned myocardium. Basic Res Cardiol. 1994;89:149–162.

    PubMed  CAS  Google Scholar 

  18. Davidoff R, Picard MH, Force T, Thomas JD, Guerrero JL, McGlew S, Weyman AE. Spatial and temporal variability in the pattern of recovery of ventricular geometry and function after acute occlusion and reperfusion. Am Heart J. 1994;127:1231–1241.

    PubMed  CrossRef  CAS  Google Scholar 

  19. De Winkel MEM, Blande T, Treijtel BW. Viscoelastic properties of cross-bridges in cardiac muscle. Am J Physiol. 1995;268:H987–H998.

    PubMed  Google Scholar 

  20. Dean EN, Shlafer M, Nicklas JM. The oxygen consumption paradox of stunned myocardium in dogs. Basic Res Cardiol. 1990;85:120–131.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Drzewiecki GM, Karam E, Welkowitz W. Physiological basis for mechanical time-variance in the heart: Special consideration of non-linear function. J Theor Biol. 1989;139:465–486.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Drzewiecki GM, Wasicko MJ, Li JK-J. Diastolic mechanics and the origin of the third heart sound. Ann Biomed Eng. 1991;19:651–667.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Drzewiecki GM, Wang J-J, Li JK-J, Kedem J, Weiss H. Modeling of mechanical dysfunction in regional stunned myocardium of the left ventricle. IEEE Trans Biomed Eng. 1996;43:1151–1163.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Edwards CH, Rankin JC, McHale PA, Ling D, Anderson RW. Effects of ischemia on left ventricular regional function in the conscious dog. Am J Physiol. 1981;240:H413–H420.

    PubMed  Google Scholar 

  25. Elings VB, Jahn GE, Vogel JHK. A theoretical model of regionally ischemic myocardium. Circ Res. 1977;41:722–729.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Farber NE, Pieper GM, Gross GJ. Regional differences in postischemic recovery in the stunned canine myocardium. Am Heart J. 1987;114:1086–1095.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Furukawa S, Bavaria JE, Kreiner G, Edmunds LH. Relationship between total mechanical energy and oxygen consumption in the stunned myocardium. Ann Thorac Surg. 1990;49:543–549.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Glower D, Schaper J, Kabas JS, Hoffmeister HM, Schaper W, Spratt JA, Davis JW, Rankin JS. Relation between reversal of diastolic creep and recovery of systolic function after ischemic myocardial injury in conscious dogs. Circ Res. 1987;60:850–860.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Greenfield RA, Swain JL. Disruption of myofibrillar energy use: Dual mechanisms that may contribute to postischemic dysfunction in stunned myocardium. Circ Res. 1987;60:283–289.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Greve G, Rotevatnl S, Svendvy K, Grong K. Early morphologic changes in cat heart muscle cells after acute coronary artery occlusion. Am J Pathol. 1990; 136:276–283.

    Google Scholar 

  31. Hess OM, Osaskada G, Lavelle JF, Gallagher KP, Kemper WS, Ross J. Diastolic myocardial wall stiffness and ventricular relaxation during partial and complete coronary occlusions in the conscious dog. Cir Res. 1983;52:387–400.

    CrossRef  CAS  Google Scholar 

  32. Heyndrickx GR, Wins W, Melin JA. Regional wall motion abnormalities in stunned and hibernating myocardium. Eur Heart J. 1993;14(Suppl. A):8–13.

    PubMed  CrossRef  Google Scholar 

  33. Heyndrickx GR, Millard RW, McRritchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–985.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Kedem J, Guo X, Roitstein A, Weiss HR. Local auxotonic myocardial force measurement in vivo. FASEB J. 1994;8:A590.

    Google Scholar 

  35. Krukenkamp IB, Silverman NA, Sorlie D, Pridjian A, Feinberg H, Levitsky S. Characterization of postischemic myocardial oxygen utilization. Circulation. 1986;74(Suppl III):125–129.

    Google Scholar 

  36. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E. Excitation-contraction coupling in postischemic myocardium: Does failure of activator Ca2 +transients underlie stunning? Circ Res. 1990;66:1268–1276.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E. Patho-physiology and pathogenesis of stunned myocardium: Depressed Ca2 + activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest. 1987;79:950–961.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Laster SB, Becker LC, Ambrosio G, Jacobus WE. Reduced aerobic metabolic efficiency in globally stunned myocardium. J Mol Cell Cardiol. 1989;21:419–426.

    PubMed  CrossRef  CAS  Google Scholar 

  39. Lew WYW, Nishikawa Y, Su H. Cardiac myocyte function and left ventricular strains after brief ischemia and reperfusion in rabbits. Circulation. 1994; 90:1942–1950.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Li JK-J. Regional ventricular function in myocardial ischemia. In: Sideman S, Beyar R, eds. Activation, Metabolism, and Perfusion of the Heart. Dordrecht: Martinus Nijhoff Publishers; 1987:453–461.

    CrossRef  Google Scholar 

  41. MacKenna DA, Omens JH, McCulloch AD, Covell JW. Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Am J Physiol. 1994;266:H1007–H1018.

    PubMed  CAS  Google Scholar 

  42. Nakamura Y, Sasayama S, Nonogi H, Murakami T, Kawai C. Alterations in left ventricular relaxation, early diastolic filling and passive viscoelastic properties during postpacing ischemia. Am J Cardiol. 1989;63:E72–E77.

    CrossRef  Google Scholar 

  43. Meissner A, Norgan JP. Contractile dysfunction and abnormal Ca2+modulation during postischemic reperfusion in rat heart. Am J Physiol. 1995;268:H100–H112.

    PubMed  CAS  Google Scholar 

  44. Ohgoshi Y, Goto Y, Futaki S, Yaku H, Kawaguchi O, Suga H. Increased oxygen cost of contractility in stunned myocardium of dog. Circ Res. 1991;69:975–988.

    PubMed  CrossRef  CAS  Google Scholar 

  45. Perl M, Horowitz A. Simulation of the mechanics of an infarcted left ventricle. In: Sideman S, Beyar R, eds. Activation, Metabolism and Perfusion of the Heart. Dordrecht: Martinus Nijhoff Publishers; 1987:463–477.

    CrossRef  Google Scholar 

  46. Pomar F, Cosin J, Portoles M, Faura M, Renau-Pigueras J, Hernandis A, Andres F, Colomer JL, Graullera B. Functional and ultrastructural alterations of canine myocardium subjected to very brief coronary occlusions. Eur Heart J. 1995;16:1482–1490.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Przyklenk K, Patel B, Kloner RA. Diastolic abnormalities of postischemic“stunned”myocardium. Am J Cardiol 1987;60:1211–1213.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Przyklenk K, Kloner RA. Stunned and hibernating myocardium. In: Hurst JW, ed. New Types of Cardiovascular Diseases. New York: Igaku-Shoin Medical Publisher; 1994:22–45.

    Google Scholar 

  49. Rankin JS, Arentzen CE, McHale PA, Ling D, Anderson RW. Viscoelastic properties of the diastolic left ventricle in the conscious dog. Cir Res. 1977;41: 37–45.

    CrossRef  CAS  Google Scholar 

  50. Rynning SE, Hexeberg E, Birkeland S, Westby J, Grong K. Blockade of ad-enosine receptors during ischemia increases systolic dysfunction but does not affect diastolic creep in stunned myocardium. Europ Heart J. 1994;15:1705–1711.

    CAS  Google Scholar 

  51. Schaper J, Mulch J, Winkler G, Schaper W. Ultrastructural, functional, and biochemical criteria for estimation of reversibility of ischemic injury: A study on the effects of global ischemia on the isolated dog heart. J Mol Cell Cardiol 1979;11:521–541.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Sharney RH, Takahashi S, Zhao M, Sonnenblick EH, Eng C. Collagen loss in the stunned myocardium. Circulation. 1992;85:1483–1490.

    CrossRef  Google Scholar 

  53. Strac V, Yellin EL, Nikolic SD. Viscoelastic behavior of the isolated guinea pig left ventricle in diastole. Am J Physiol. 1996;271:H1314–H1324.

    Google Scholar 

  54. Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M, Shibahara T, Nose Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng. 1980;27:299–305.

    PubMed  CrossRef  CAS  Google Scholar 

  55. Tani J, Yamamoto H, Honda H, Ootomo K, Koiwa Y, Takagi T, Kikuchi J, Hoshi N, Takashima T. Estimation of left ventricular myocardial elasticity and viscosity by a thick-walled spherical model. Med Biol Eng Comput. 1993;31:325–332.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Wang J-J, Drzewiecki GM, Li JK-J, Kedem J, Weiss H. Quantitative analysis of the time delay between end-diastole and the onset of myocardial shortening in stunned myocardium. In: Vossoughi O J. Proceedings of the 13th Southern Bio-medical Engineering Conference. Washington, DC: University of DC Press; 1994:951–954.

    Google Scholar 

  57. Wang, J-J, Drzewiecki G, Li JK-J, Nairn K, Kedem J, Weiss H. Passive fiber damage during myocardial stunning leads to shortening delay: Mathematical modeling approach. FASEB J. 1995;9:A14. Abstract.

    Google Scholar 

  58. Wang J-J, Drzewiecki G, Li JK-J. Mechanism of increased resting length in stunned myocardium. FASEB J. 1996;10:A541. Abstract.

    Google Scholar 

  59. Wang J-J. Study of mechanical dysfunction during myocardial stunning and ischemia using a novel cardiac regional force transducer. New Brunswich, NJ: Rutgers University and UMDNJ-Robert Wood John Medical School; 1996. Dissertation.

    Google Scholar 

  60. Whittaker P, Boughner DR, Kloner RA, Przyklenk K. Stunned myocardium and myocardial collagen damage: Differential effects of single and repeated occlusions. Am Heart J. 1991;121:434–441.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (stunned) but viable myocardium. J Am Coll Cardiol. 1987;10: 1322–1334.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, JJ., Drzewiecki, G.M. (1998). Modeling Reversible Mechanical Dysfunction in the Stunned Myocardium. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive